• Title/Summary/Keyword: Cathode requirements

Search Result 23, Processing Time 0.017 seconds

Development and Testing of a Prototype Long Pulse Ion Source for the KSTAR Neutral Beam System

  • Chang Doo-Hee;Oh Byung-Hoon;Seo Chang-Seog
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.357-363
    • /
    • 2004
  • A prototype long pulse ion source was developed, and the beam extraction experiments of the ion source were carried out at the Neutral Beam Test Stand (NBTS) of the Korea Superconducting Tokamak Advanced Research (KSTAR). The ion source consists of a magnetic bucket plasma generator, with multi-pole cusp fields, and a set of tetrode accelerators with circular apertures. Design requirements for the ion source were a 120kV/65A deuterium beam and a 300 s pulse length. Arc discharges of the plasma generator were controlled by using the emission-limited mode, in turn controlled by the applied heating voltage of the cathode filaments. Stable and efficient arc plasmas with a maximum arc power of 100 kW were produced using the constant power mode operation of an arc power supply. A maximum ion density of $8.3{\times}10^{11}\;cm^{-3}$ was obtained by using electrostatic probes, and an optimum arc efficiency of 0.46 A/kW was estimated. The accelerating and decelerating voltages were applied repeatedly, using the re-triggering mode operation of the high voltage switches during a beam pulse, when beam disruptions occurred. The decelerating voltage was always applied prior to the accelerating voltage, to suppress effectively the back-streaming electrons produced at the time of an initial beam formation, by the pre-programmed fast-switch control system. A maximum beam power of 0.9 MW (i.e. $70\;kV{\times}12.5\;A$) with hydrogen was measured for a pulse duration of 0.8 s. Optimum beam perveance, deduced from the ratio of the gradient grid current to the total beam current, was $0.7\;{\mu}perv$. Stable beams for a long pulse duration of $5{\sim}10\;s$ were tested at low accelerating voltages.

A Study on the Mechanical Properties of Single and Multiple layer Thin Film of YSZ Electrolyte Produced by E-beam Coating for Solid Oxide Fuel Cells (전자빔 코팅에 의해 제조된 고체산화물 연료전지용 YSZ 전해질 단층 및 다층박막의 기계적 특성 연구)

  • Im, Hae-Sang;Kim, Hui-Jae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.792-797
    • /
    • 1999
  • The 8mol.%Y$_2$$O_3$-$ZrO_2$mainly employed as an electrolyte of solid oxide fuel cells(SOFCs) shows excellent electrical properties but has a weakness in the mechanical properties. Since the electrolyte of SOFCs requires both good electrical and mechanical properties, this study was conducted to meet both requirements. The electrolyte thin films were produced on the LSM(cathode material) substrate of a cell and Si wafer. Four electrolyte film types of single layer and the multiple layer, consisting of 3-YSZ(3mol.%$Y_2$$O_3$) with excellent mechanical properties and 8-YSZ with the excellent electric conduction, were produced by electron beam coating technology. Ther crystal structure and the mechanical properties were also analysed. As the results of the study, the 3-YSZ thin film turned out to be in the tetragonal, partially monoclinic phase, while the 8-YSZ thin film showed the cubic phase. The residual stress in the multiple layer was lower than that of the single layer. The microhardness of the multiple layer was similar to that of the existing 8-YSZ single layer both before and after annealing treatment.

  • PDF

Development of an electron source using carbon nanotube field emittes for a high-brightness X-ray tube (탄소나노튜브를 이용한 고휘도 X-선원용 전자빔원 개발)

  • Kim, Seon-Kyu;Heo, Sung-Hwan;Cho, Sung-Oh
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.252-257
    • /
    • 2005
  • A high-brightness electron beam source for a microfocus X-ray tube has been fabricated using a carbon-nanotube (CNT) field emitter. The electron source consists of cathode that includes a CNT field emitter, a beam-extracting grid, and an anode that accelerates that electron beam. The microfocus X-ray tube requires an electron beam with the diameter of less than 5 $\mu$m and beam current of higher than 30 $\mu$A at the position of the X-ray target. To satisfy the requirements, the geometries of the field emitter tips and the electrodes of the gun was optimized by calculating the electron trajectories and beam spatial profile with EGUN code. The CNT tips were fabricated with successive steps: a tungsten wire with the diameter of 200 $\mu$m was chemically etched and was subsequently coated with CNTs by chemical vapor deposition. The experiments of electron emission at the fabricated CNT tips were performed. The design characteristics and basic experimental results of the electron source are reported.