• Title/Summary/Keyword: Catenary Mooring

Search Result 49, Processing Time 0.025 seconds

Design of Oceanography Buoy - Part II: Mooring System (해양관측용 부이의 설계 건전성 평가 - Part II: 계류시스템 구조건전성 평가)

  • Keum, Dong-Min;Kim, Tae-Woo;Han, Dae-Suk;Lee, Won-Boo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2009
  • The purpose of the present study was to evaluate the safety under extreme environmental conditions and the dynamic safety under service environment conditions, of oceanographic buoy mooring systems consisting of a variety of materials, including chain, wire rope, nylon rope, and polypropylene rope. For the static safety assessment of a mooring system, after the calculation of external forces and the division of a mooring system into finite elements, the numerical integral was conducted to yield the elemental static tension until satisfying the geometrical convergence condition. To evaluate the dynamic safety, various processes were considered, including data collection about the anticipated areas for mooring, a determination of the parameters for the interpretation, the interpretation of the dynamic characteristics based on an analytic equation that takes into account the heave motion effect of a buoy hull and a mooring system, and a fatigue analysis of the linear cumulative damage. Based on the analysis results, a supplementary proposal for a wire rope that has a fracture in an actual mooring area was established.

Experimental Study of Effect of Mooring Line Failure on Behavior of Turret-moored FPSO Ship (터렛 계류된 FPSO의 운동응답 및 계류선 손상 시 거동 특성에 대한 실험적 연구)

  • Hong, Jang-Pyo;Cho, Seok-Kyu;Seo, Jang-Hoon;Sung, Hong-Gun;Lee, Dong Yeop;Park, In Bo;Won, Young Uk;Choi, Sung Kwon;Kim, Dae-woong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.231-240
    • /
    • 2015
  • FPSO model tests of mooring line failure were carried out in the ocean basin at KRISO. The characteristics of the motions and mooring lines were investigated. The FPSO ship was moored using an internal turret and catenary mooring. The test model was 1/60 scale. The mooring lines were designed to satisfy the characteristics of the original mooring lines using the truncation method. The experiments were conducted under various environments: a safe wave, current and wind condition; single broken mooring line condition; and transient mode condition. The moment of the break was determined based on experimental test results. The results showed that the FPSO behavior and mooring line tensions were acceptable under the failure condition.

Comparison of Fatigue Damage Models of Spread Mooring Line for Floating Type Offshore Plant (부유식 해양플랜트 다점 계류라인의 피로손상모델 비교)

  • Park, Jun-Bum;Kim, Kookhyun;Kim, Kyung-Su;Ko, Dae-Eun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.63-69
    • /
    • 2013
  • The mooring lines of a floating type offshore plant are known to show wide banded and bimodal responses. These phenomena come from a combination of low and high frequency random load components, which are derived from the drift-restoring motion characteristic and wind- sea, respectively. In this study, fatigue models were applied to predict the fatigue damage of mooring lines under those loads, and the result were compared. For this purpose, seven different fatigue damage prediction models were reviewed, including mathematical formula. A FPSO (floating, production, storage, and offloading) with a $4{\times}4$ spread catenary mooring system was selected as a numerical model, which was already installed at an offshore area of West Africa. Four load cases with different combinations of wave and wind spectra were considered, and the fatigue damage to each mooring line was estimated. The rain flow fatigue damage for the time process of the mooring tension response was compared with the results estimated by all the fatigue damage prediction models. The results showed that both Benasciutti-Tovo and JB models could most accurately predict wide banded bimodal fatigue damage to a mooring system.

Estimation of Dynamic Motions and Mooring Forces for Floating Type Offshore Platform Based on Hydrodynamic Analysis (동수력학 해석 기반 부유식 해양 플랫폼의 동적 운동 및 계류력 산정)

  • Cha, Ju-Hwan;Moon, Chang-Il;Song, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.48-57
    • /
    • 2012
  • This paper deals with numerical analyses in the context of estimations of hydrodynamic motions and dynamic loads for a floating type offshore platform using some exclusive simulation code such as code for the simulation of a floating type of offshore crane based on multi-body dynamics, along with the commercial code AQWA. Verifications of numerical models are carried out by comparing the RAO results from the simulation code. In the verification analyses, hydrodynamic motions are examined in the frequency domain for the floating type offshore platform according to the mooring lines. Both the hydrodynamic motions and dynamic loads are estimated for floating type offshore platforms equipped with the catenary type and taut mooring lines. A review and comparison are carried out for the numerically estimated results. The structural safety of the connection parts in an offshore structure such as a floating type offshore platform is one of the most important design criteria in view of fatigue life. The dynamic loads in the connecting area between a floating type offshore platform and its mooring lines are estimated in detail according to variations in the mechanical properties of the mooring lines. The dynamic tension load on the mooring lines is also estimated.

Experimental Study on Motion of FPSO and Characteristics of Mooring System according to Turret Position (터렛 위치에 따른 FPSO 거동 및 계류시스템 특성에 대한 실험 연구)

  • Lee, Dong-Yeop;Hong, Jang-Pyo;Cho, Seok-Kyu;Kim, Yoon-Ho;Sung, Hong-Gun;Seo, Jang-Hoon;Kim, Dae-Woong;Kim, Byung-Woo;Seo, Yong-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.143-153
    • /
    • 2015
  • This paper presents the results of an experimental study on the motion of an FPSO (Floating production storage and off-loading) and the characteristics of the mooring systejavascript:confirm_mark('abe', '1');m according to the turret position. Model tests of a turret-moored FPSO were carried out in the Ocean Engineering basin of KRISO. The FPSO was moored using an internal turret and catenary mooring. The models (1/60 scale) that were prepared included the FPSO, turret, and mooring lines. The experiments were conducted in irregular waves and combined environments, with waves, currents, and winds. A time-domain simulation was performed using OrcaFlex. The motion response and mooring line tension from the present calculations were compared with the results of experiments, and the agreement was fairly good. In addition, the results showed that the weathervaning stability was improved when the position of the turret was moved in the bow direction.

Motion Analysis of Two Point Moored Oil Tanker (2점 계류된 선박에 대한 운동 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.232-236
    • /
    • 2003
  • The anchor is laid on seabed and the main engine is worked to against incident environmental loads in typoon. As the main engine is broken down in the storm, the anchor chain is cutted and the vessel is drifted. Although a ship is moored by two point mooring lines to keep the her position, a ship is crashed into a rock because of typoon and the accident of oil spilling may be occured. In this paper, we studied the position-keeping of a ship which is analyized based on the slow motion maneuvering equations considering wave, current and wind. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical of MMG. The two point mooring forces are quasisatatically evaluated by using the catenary equation. The coefficeints of wind forces are modeled from Isherwood’s emperical data and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two point moored ship are simulated considering wave, current, wind load in time domain.

  • PDF

Slow Drift Motion Analyses for a FPSO with Spread Mooring Systems (다점 계류된 원유 저장선에 대한 저주파수 운동 해석)

  • 이호영;박종환;곽영기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.3
    • /
    • pp.195-201
    • /
    • 2001
  • The time simulation of slow drift motions of moored FPSO in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and are consisted of horizontal plane motions such as surge, sway and yaw. The added mass, wave damping coefficients, first order wave exciting forces and the second order wave drift forces involved in the equations are obtained from three-dimensional panel method in the frequency domain. The mooring lines are modeled as quasi-static catenary cable. As a numerical example, time domain analyses are carried out for a box-type FPSO in long crest irregular wave condition.

  • PDF

A Study on Out-of-Plane Bending Mechanism of Mooring Chains for Floating Offshore Plants (부유식 해양플랜트 계류 체인의 면외굽힘 거동에 대한 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo;Kang, Chan-Hoe
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.580-588
    • /
    • 2010
  • OPB(out-of-plane bending)-induced failure of mooring chain was firstly addressed by CALM (catenary anchor leg mooring)-type offloading buoy, located approximately one mile away from the bow of the Girassol FPSO which was installed offshore area of Angola in September 2001. This study deals with verifying the load transfer mechanism between the first free chain link and connected two chain links inside the chain hawse. OPB moment to angle variation relationships are proposed by extensive parametric study where the used design variables are static friction coefficients, proof test loads, nominal tension forces, chain link diameters, chain link grades and chain link types. The stress ranges due to OPB moments are obtained using nonlinear FEAs (finite element analyses). Final stress ranges are derived considering ones from IPT (in-plane tension) forces. Also a formula for OPB fatigue assessment is briefly introduced.

Drift Motion Analysis on Horizontal Plane of a Two-Point Moored Oil Tanker (2점 계류된 선박에 대한 수평면상 표류운동 해석)

  • 이호영;임춘규
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.8-12
    • /
    • 2004
  • The anchor is laid on the seabed, and the main engine is working against incident environmental loads in a typhoon. As the main engine is broken Mum in the storm, the anchor chain is cut and the vessel drifts. Although a ship is moored by two-point mooring lines to maintain her position, it has crashed into a rock because of a typhoon, resulting in a possible accidental oil spillage. In this paper, we studied maintenance of a ship's position, which is analyzed based on the slow motion maneuvering equations considering wave, current, and wind. To estimate wave loads, the direct integration method is employed. The current forces are calculated, using MMG (Mathematical Modeling Group). Th two-point mooring forces are quasi-statistically evaluated, using the catenary equation. Th coefficients of wind forces are modeled from Isherwood's empirical data, and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two-point moored ship are simulated, considering wave, current, and wind load, in specific domain of time.

Capacity of Horizontally Loaded Suction Anchor Installed in Silty Sand (세립 사질토 지반에 설치된 석션 앵커의 수평 지지력)

  • Kim, Surin;Choo, Yun Wook;Kim, Dong-Soo;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • A suction anchor is one of the most popular anchors for deepsea floating systems. An anchor used for catenary mooring is predominantly under a horizontal load. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was mainly subjected to a horizontal load induced by a catenary line. In order to study the behavior of the suction anchor, 3D FEM analysis models were developed and analyzed. Depending on the location of the load (padeye), the ultimate horizontal load was monitored. The distributions of the reaction forces around the anchor induced by the seabed were analyzed using the circumferential stress to understand the behavior of the suction anchor under a horizontal load.