• Title/Summary/Keyword: Catastrophic failure

Search Result 186, Processing Time 0.026 seconds

Dynamic behavior of smart material embedded wind turbine blade under actuated condition

  • Mani, Yuvaraja;Veeraragu, Jagadeesh;Sangameshwar, S.;Rangaswamy, Rudramoorthy
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.211-217
    • /
    • 2020
  • Vibrations of a wind turbine blade have a negative impact on its performance and result in failure of the blade, therefore an approach to effectively control vibration in turbine blades are sought by wind industry. The small domestic horizontal axis wind turbine blades induce flap wise (out-of-plane) vibration, due to varying wind speeds. These flap wise vibrations are transferred to the structure, which even causes catastrophic failure of the system. Shape memory alloys which possess physical property of variable stiffness across different phases are embedded into the composite blades for active vibration control. Previously Shape memory alloys have been used as actuators to change their angles and orientations in fighter jet blades but not used for active vibration control for wind turbine blades. In this work a GFRP blade embedded with Shape Memory Alloy (SMA) and tested for its vibrational and material damping characteristics, under martensitic and austenite conditions. The embedment portrays 47% reduction in displacement of blade, with respect to the conventional blade. An analytical model for the actuated smart blade is also proposed, which validates the harmonic response of the smart blade.

FRACTURE STRENGTHS OF CEROMER CROWNS SUPPORTED ON THE VARIOUS ABUTMENT CORE MATERIALS

  • Kim Young-Oh;Ku Chul-Whoi;Park Young-Jun;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.6
    • /
    • pp.647-653
    • /
    • 2004
  • Statement of problem. The effects of various core buildup materials which differs in the mechanical properties on the fracture strength of metal-free crowns is unknown. Purpose. This study was carried out to evaluate the fracture strengths of Artglass ceromer crowns supported by 3 different core materials in clinically simulated anterior tooth preparation. Material and methods. Ten crowns from each group were constructed to comparable dimensions on the various dies made by gold alloy, Ni-Cr alloy, and composite resin. The ten crowns were then cemented onto the dies and loaded until catastrophic failure took place. Fracture resistance to forces applied to the incisal edges of the anterior crowns supported by three types of dies was tested. Results. The ceromer crowns on the composite resin dies fractured at significantly lower values(287.7 N) than the ceromer crowns on the metal dies(approximately 518.4 N). No significant difference was found between the fracture values of the ceromer crowns on the dies of gold alloy and Ni-Cr alloy. Conclusion. The failure loads of the ceromer crowns on the metal dies were almost the same and not affected by the differences of casting alloys. However, the fracture values of the ceromer crowns on the resin dies were significantly reduced by the relative weak properties of composite resin core material.

An Experimental Study on Behavior of Field Splice Joints of Longitudinal Rib in Orthotropic Steel Decks (강상판 종리브 현장연결부의 실험적 거동 특성)

  • Choi, Dong Ho;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.621-629
    • /
    • 2001
  • This study consists of static and fatigue tests to evaluate the behavior on the field splice joint of longitudinal rib in orthotropic steel deck specimens. Specifically, static and influence surface tests are performed for the stress distribution at the scallop area and high-strength bolt connection of longitudinal rib to examine the existence of handhole cover plate and the effect of eccentric loads. The ultimate strength of the field splice joint of longitudinal rib is obtained. In fatigue tests, cracks are observed at the scallop in the lower level test and the catastrophic failure of longitudinal rib is occurred following the failure of handhole cover plate in the higher level test. This study gives a basis for the better understanding of the field splice joint of longitudinal rib.

  • PDF

A Study on Fatigue Characteristic of Connecting Rod Material for Automobile (자동차용 커넥팅로드 소재의 피로특성에 관한 연구)

  • Kim, Hyun-Soo;Park, In-Duck;Kim, Chang-Hoon;Kim, Tae-Gyu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.163-169
    • /
    • 2006
  • Fretting is a kind of surface degradation mechanism observed in mechanical components and structures. The fretting damage decreases into 50-70% of the plain fatigue strength. The connecting rod for automobile has been used in special environments and various loading conditions. Failure of connecting rod in automotive engine may cause catastrophic situation. In this study, we investigated the fatigue characteristic of connecting rod material for an automobile. Fatigue life is defined as the number of cyclic stress to failure by regular cyclic stress. Fatigue life of C70S6 specimen was obtained from 134,000 to 147,000 cycles. Fatigue limit showed 432MPa by normal fatigue test. The other hands, it was 96MPa in the case of fretting fatigue test. It was extremely lower than that of a normal fatigue test. From observation of fracture surface, it was confirmed that the fatigue crack was initiated at the boundary of a specimen and bridge pad.

Analysis of the Causes of Multiple Casualties in an Electronics Factory Fire (전자공장 화재의 다수 사상자 발생원인 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.130-139
    • /
    • 2019
  • The electronics factory fire, that occurred at 15:40 on August 21, 2018, killed nine people and injured six. This study analyzes the causes of many of the casualties from the fire, and is based on fire investigation results and so on. The findings suggest that major causes included failure of the automatic alarm system to function, failure of the emergency broadcasting system to function, the fire suddenly spreading due to polyurethane foam in a ceiling on the 4thfloor, a power outage immediately after the fire started, a sprinkler system that was not working, a delay in reporting the fire, and improper management of fire facilities by a fire safety management company.

A Study on Estimating the Next Failure Time of a Compressor in LNG FPSO (LNG FPSO 압축기 고장시간 예측 방안에 관한 연구)

  • Cho, Sang-Je;Jun, Hong-Bae;Shin, Jong-Ho;Hwang, Ho-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.12-23
    • /
    • 2014
  • The O&M (Operation and Maintenance) phase of offshore plants with a long life cycle requires heavy charges and more efforts than the construction phase, and the occurrence of an accident of an offshore plant causes catastrophic damage. So previous studies have focused on the development of advanced maintenance system to avoid unexpected failures. Nowadays due to the emerging ICTs (Information Communication Technologies) and sensor technologies, it is possible to gather the status data of equipment and send health monitoring data to administrator of an offshore plant in a real time way, which leads to having much concern on the condition based maintenance policy. In this study, we have reviewed previous studies associated with CBM (Condition-Based Maintenance) of offshore plants, and introduced an algorithm predicting the next failure time of the compressor which is one of essential mechanical devices in LNG FPSO (Liquefied Natural Gas Floating Production Storage and Offloading vessel). To develop the algorithm, continuous time Markov model is applied based on gathered vibration data.

Probabilistic Model of Service Life to Evaluate Damage Tolerance of Composite Structure (복합재 항공구조물의 손상허용평가를 위한 운항수명의 확률적 모델)

  • A.스튜어트;A.우샤코프;심재열;황인희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.245-248
    • /
    • 2000
  • Modern aircraft composite structures are designed using a damage tolerance philosophy. This design philosophy envisions sufficient strength and structural integrity of the aircraft to sustain major damage and to avoid catastrophic failure. The only reasonable way to treat on the same basis all the conditions and uncertainties participating in the design of damage tolerant composite aircraft structures is to use the probability-based approach. Therefore, the model has been developed to assess the probability of structural failure (POSF) and associated risk taking into account the random mechanical loads, random temperature-humidity conditions, conditions causing damages, as well as structural strength variations due to intrinsic strength scatter, manufacturing defects, operational damages, temperature-humidity conditions. The model enables engineers to establish the relationship between static/residual strength safety margins, production quality control requirements, in-service inspection resolution and criteria, and POSF. This make possible to estimate the cost associated with the mentioned factors and to use this cost as overall criterion. The methodology has been programmed into software.

  • PDF

Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System (지적보전시스템의 실시간 다중고장진단 기법 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.