• Title/Summary/Keyword: Catalytic properties

Search Result 679, Processing Time 0.023 seconds

Effect of Reaction Conditions for n-Butane Dehydrogenation over Pt-Sn/θ-Al2O3 Catalyst (Pt-Sn/θ-Al2O3 촉매상에서 반응조건에 따른 n-부탄의 탈수소화 반응)

  • Cho, Kyung-Ho;Kang, Seong-Eun;Park, Jung-Hyun;Cho, Jun-Hee;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.18 no.2
    • /
    • pp.162-169
    • /
    • 2012
  • Pt-Sn/${\theta}-Al_2O_3$ catalyst for n-butane dehydrogenation reaction was prepared by incipient wetness method. To confirm the physicochemical properties of Pt-Sn/${\theta}-Al_2O_3$ catalyst, the characterization was performed using X-ray diffraction (XRD), $N_2$ sorption analysis, temperature programmed desorption of $NH_3$ ($NH_3$-TPD), temperature programmed reduction of $H_2$ ($H_2$-TPR) techniques. Also, the catalytic activities of Pt-Sn/${\theta}-Al_2O_3$ for n-butane dehydrogenation was tested as a function of pretreatment temperature, pretreatment time, reaction temperature, and the partial pressure of n-butane and hydrogen. The sum of selectivities to n-butenes consisting of 1-butene, cis-2-butene, and trans-2-butene was almost constant 95% in the range of conversion of n-butane 5-55%. The activation energy calculated from Arrhenius equation was $82.4kJ\;mol^{-1}$ and the reaction orders of n-butane and hydrogen from Power's law were 0.70 and -0.20, respectively.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Characterization of Homocysteine ${\gamma}$-Lyase from Submerged and Solid Cultures of Aspergillus fumigatus ASH (JX006238)

  • El-Sayed, Ashraf S.;Khalaf, Salwa A.;Aziz, Hani A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.499-510
    • /
    • 2013
  • Among 25 isolates, Aspergillus fumigatus ASH (JX006238) was identified as a potent producer of homocysteine ${\gamma}$-lyase. The nutritional requirements to maximize the enzyme yield were optimized under submerged (SF) and solid-state fermentation (SSF) conditions, resulting in a 5.2- and 2.3-fold increase, respectively, after the last purification step. The enzyme exhibited a single homogenous band of 50 kDa on SDS-PAGE, along with an optimum pH of 7.8 and pH stability range of 6.5 to 7.8. It also showed a pI of 5.0, as detected by pH precipitation with no glycosyl residues. The highest enzyme activity was obtained at $37-40^{\circ}C$, with a $T_m$ value of $70.1^{\circ}C$. The enzyme showed clear catalytic and thermal stability below $40^{\circ}C$, with $T_{1/2}$ values of 18.1, 9.9, 5.9, 3.3, and 1.9 h at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. Additionally, the enzyme $K_r$ values were 0.002, 0.054, 0.097, 0.184, and 0.341 $S^{-1}$ at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. The enzyme displayed a strong affinity to homocysteine, followed by methionine and cysteine when compared with non-S amino acids, confirming its potency against homocysteinuria-related diseases, and as an anti-cardiovascular agent and a specific biosensor for homocysteinuria. The enzyme showed its maximum affinity for homocysteine ($K_m$ 2.46 mM, $K_{cat}\;1.39{\times}10^{-3}\;s^{-1}$), methionine ($K_m$ 4.1 mM, $K_{cat}\;0.97{\times}10^{-3}\;s^{-1}$), and cysteine ($K_m$ 4.9 m M, $K_{cat}\;0.77{\times}10^{-3}\;s^{-1}$). The enzyme was also strongly inhibited by hydroxylamine and DDT, confirming its pyridoxal 5'-phosphate (PLP) identity, yet not inhibited by EDTA. In vivo, using Swiss Albino mice, the enzyme showed no detectable negative effects on platelet aggregation, the RBC number, aspartate aminotransferase, alanine aminotransferase, or creatinine titer when compared with negative controls.

Synthesis of Prussian Blue Analogue and Magnetic and Adsorption Characteristics of MnFe2O4 (프러시안 블루 유사체의 합성 및 MnFe2O4의 자성과 흡착 특성)

  • Lee, Hye-In;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • The Prussian Blue Analogue(PBA) has three dimensional structure and the metal - organic framework material, and it has a variety configurations depending on the type of organic ligands. PBA has been receving an attention in the fields of biosensors, optical, catalytic, and hydrogen storage device. Also, it is an environmental friendly substance with a chemical stability. In addition, PBA is widely used in the filed of adsorption art since we can adjust the size of the fine pores. In this study, we synthesized $Mn_3[Fe(CN)_6]_2$, an organometallic framework chains by using a hydrothermal synthesis method. We used $K_4[Fe(CN)_6]$ and $MnCl_2$ as precursors. We also produced a manganese iron oxide, by baking the synthesized material. The effect of the size and shape of the particles was examined by controling pH of the precursor solution, the molar concentration of the precursor, and reaction time as the experimental variables. Synthesized absorbent was analyzed by XRD, SEM, FT-IR, UV-Vis, and TG / DTA to evaluate the adsorption properties of several dyes.

Study of the Nonstoichiometry of Titanium Dioxide (산화티탄 (IV)의 비화학양론에 관한 연구)

  • Yo, Chul Hyun;Kim, Dai Uk;Choi, Jae Shi
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.323-332
    • /
    • 1976
  • The x or $x^0+x'$ values of the nonstoichiometric chemical formula $TiO_{2-x}$ or $Ti_{2-(x^0+x')}$ have been measured by a specially made magnetic quartz microbalance in a temperature range from 600 to $1300^{\circ}C$ under oxygen pressures of $1{\times}10^{-6} to 1 atm. The standard x or $x^0$ value of the rutile is 0.00148. The x values $under_xoxygen$ pressure of 1 atm decrease with temperatures and then the stoichiometric rutile (or x = 0) is formed at $1130^{\circ}C$. The x values varied between 0.00148 and 0.01719 at a temperature range from 600 to $1300^{\circ}C$ under $1{\times}10^{-9}{\sim}1{\times}10^{-2}$ atm oxygen pressures. The enthalpies of formation of the nonstoichiometric rutile, $H_f$, varied between 21.05 and 29.97 Kcal/mole under the above conditions. The 1/n values calculated from the plots of log X' vs. log $Po_2$ are -{\frac{1}{2}}{\sim}-{\frac{1}{4}} under low oxygen pressure range of $1{\times}10^{-6}\;to\;1{\times}10^{-4}$ atm. Many physical properties of the titanium dioxide, such as the stability of the rutile, Electrical conductivity, catalytic activity and defects, can be explained through the x values and the thermodynamic data calculated from the temperature and oxygen pressure dependences of the x' values.

  • PDF

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst (뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교)

  • Jo, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.

A Study on the Effectiveness of Remanufacturing Technology for the Catalyzed Diesel Particulate Filter-trap(DPF) Deactivated by Diesel Exhaust Gas (촉매가 담지된 사용후 경유차 매연저감장치 DPF의 재제조 효과에 관한연구)

  • Choi, Kang-Yong;Park, Hea-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.957-964
    • /
    • 2010
  • The deactivated catalyzed diesel particulate filter-trap (DPF) was remanufactured by ultrasonic wave treatment with various prepared solutions, followed by active component re-impregnation, and the emission control performance and surface properties of remanufactured DPF were studied at various remanufacturing conditions. The proper ultrasonic wave cleaning time at various prepared solutions and optimal re-impregnation amounts of active component for the best emission control performance of DPF were investigated and its performance tests were also carried out with various temperatures for the conversions of CO, THC (total hydrocarbon) and PM (particulate matter) by catalytic reaction test unit using bypass gas from the diesel engine dynamo system. It was found that the emission control performance of DPF remanufactured with the high-temperature air washing, ultrasonic wave cleaning at acid/base solutions and active component re-impregnation method was recovered to 95% level of its activity compared to that of the fresh DPF, which was caused by removing the deactivating materials from the surface of the DPF, through the analyses of performance test and their surface characterization by Optical microscope, EDX, ICP, TGA, and porosimeter.

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

A Study on Reaction of Metachromasy by means of Polyphenol Derivatives and Hematoxylin-Eosin in Vesicle of Dipalmitoyl Phosphatidyl Choline (Dipalmitoyl Phosphatidyl Choline의 Vesicle에서 Polyphenol Derivatives와 Hematoxylin-Eosin Stain에 의한 Metachromasy 반응에 관한 연구)

  • Kim, Ki-Jun;Sung, Wanmo;Kim, Joohan;Yoon, Sunghyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.348-354
    • /
    • 2019
  • Dipalmitoyl phosphatidyl choline(DPPC), Polyphenol Derivatives, and Hematoxylin-Eosin were directly sonicated in acidic condition for 6 minutes to give clear stock solutions. Absorbtion properties of Polyphenol Derivatives in lecithin vesicle of Diphalmitoyl phosphatidyl choline system at $25^{\circ}C$ have been studied by absorbtion spectroscopy. The equilibrium of Polyphenol Derivatives between monomer and dimer in lecithin vesicles have been existed at low concentration of Polyphenol Derivatives, but oligomer has been formed in vesicle at high concentration of lecithin vesicles. By adding Bacteriorhodopsin(BR) to constant concentration of Polyphenol Derivatives decreased the absorbtion ratio(${\alpha}/{\beta}$) of Polyphenol Derivatives was increased during phase transition of dipalmitoyl phosphatidyl choline. In the presence of column eluted lamella vesicle and mixture of uni- and multilamella aggregates. The differences of rate between column eluted- and mixture were observed, therefore column eluted lamella reaction was represented more catalytic effect. The phase transition temperature of hydrolysis on Dipalmitoyl phosphatidyl choline and Polyphenol Derivatives were measured higher than it of Dipalmitoyl phosphatidyl choline and no Polyphenol Derivatives.

Decomposition of Low-toxic Propellant by Cu-La-Al/honeycomb Catalysts (Cu-La-Al/honeycomb 촉매를 이용한 저독성 추진제 분해)

  • Kim, Munjeong;Yoo, Dalsan;Lee, Jeongsub;Joen, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.296-303
    • /
    • 2021
  • The objective of this study is to investigate the applicability of a Cu-supported honeycomb catalyst as a catalyst for decomposition of a low toxic liquid propellant based on ammonium dinitramide (ADN). A mixture of copper, lanthanum, and alumina was supported on the honeycomb support by wash coating to prepare a Cu-La-Al/honeycomb catalyst. We elucidated that the effect of metal loading on the physicochemical properties of Cu-La-Al/honeycomb catalyst and catalytic performance in decomposition of the ADN-based liquid propellant. As the number of wash coatings increased, the amount of active metal Cu was increased to 4.1 wt%. The BET surface area of the Cu-La-Al/honeycomb catalyst was in the range of 3.1~4.1 ㎡/g. The micropores were hardly present in Cu-La-Al/honeycomb catalysts, however, the mesopores and macropores were well developed. The Cu (2.7 wt%)-La-Al/honeycomb catalyst exhibited the highest activity in the decomposition of the ADN-based liquid propellant, which is attributed to the largest surface area, the largest pore volume, and the well-developed mesopores and macropores.