• 제목/요약/키워드: Catalytic partial oxidation of methane

Search Result 30, Processing Time 0.027 seconds

Steam Reforming of Biogas on Nickel Fiber Mat Catalysts (니켈 섬유 매트 촉매를 사용한 바이오가스 수증기개질 반응)

  • Bui, Quynh Thi Phuong;Kim, Yong-Min;Yoon, Chang-Won;Nam, Suk-Woo
    • Journal of Energy Engineering
    • /
    • v.20 no.3
    • /
    • pp.252-258
    • /
    • 2011
  • Nickel fiber mat was investigated as a potential structured catalyst for steam reforming of biogas in the temperature range of $600-700^{\circ}C$. The activity of as-received catalyst was very low owing to the smooth surface of fibers. Pretreatment of the catalyst by oxidation followed by reduction under methane partial oxidation condition significantly improved the catalytic activity, although degradation of the activity was found during the reaction due to oxidation and sintering. This deactivation was retarded by supplying additional hydrogen in the inlet gases or by coating $CeO_2$ over the catalyst surfaces.

Effects of La Addition and Preparation Methods on Catalytic Activities for Methane Partial Oxidation Catalysts (메탄 부분산화반응 촉매에 La 첨가 및 제조방법에 따른 촉매활성에 미치는 영향)

  • Cheon, Han-Jin;Shin, Ki-Seok;Ahn, Sung-Hwan;Yoon, Cheol-Hun;Hahm, Hyun-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.7-14
    • /
    • 2010
  • Synthesis gas was produced by the partial oxidation of methane. For the preparation of catalysts, Ni, known to be active in this reaction and cheap, was used as the active component and $CeO_2$, having high oxygen storage capability and high redox ability, was used as the support. The catalysts were prepared by the impregnation and urea methods. The catalyst prepared by the urea method showed about 11 times higher surface area and finer particle size than that prepared by the impregnation method. The catalysts prepared by the urea method showed higher methane conversion and synthesis gas selectivity than that prepared by the impregnation method. In this reaction, carbon deposition is a problem to be solved, so La was added to the catalyst system to reduce the carbon deposition. TGA analysis results showed that there was 2% carbon deposition with La-added catalysts and 16% with La-free catalysts. It was found that the addition of La decreases the amount of carbon deposition and prevents catalyst deactivation.

Comparative Reaction Characteristics of Methane Selective Catalytic Reduction with CO Generation Effect in the N2O Decomposition over Mixed Metal Oxide Catalysts (MMO 촉매 하에서 N2O 분해에 대한 메탄 SCR 반응 및 CO 생성 효과의 비교 연구)

  • Park, Sun Joo;Park, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.624-628
    • /
    • 2008
  • Nitrous oxide ($N_2O$), known as one of the major greenhouse gases, is an important component of the earth's atmosphere, and gives rise to precursor of acid rain and photochemical smog. For the removal of $N_2O$ and other nitrogen oxides, the SCR reaction system with various reductants is widely used. This study is based on the results of experimental and theoretical examinations on the catalytic decomposition of sole nitrous oxide ($N_2O$) and selective catalytic reduction of $N_2O$ with $CH_4$ in the presence of oxygen using mixed metal oxide catalysts obtained from hydrolatcite-type precursors. When $CH_4$ is fed together with a reductant, it affects positively on the $N_2O$ decomposition activity. At an optimum ratio of $CH_4$ to $O_2$ mole ratio, the $N_2O$ conversion activity is enhanced on the SCR reaction with partial oxidation of methane.

Performance of Ru-based Preferential Oxidation Catalyst and Natural Gas Fuel Processing System for 1 kW Class PEMFCs System (Ru계 촉매의 CO 선택적 산화 반응 및 1 kW급 천연가스 연료처리 시스템의 성능 연구)

  • Seo, Yu-Taek;Seo, Dong-Joo;Seo, Young-Seog;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • KIER has been developing a Ru-based preferential oxidation catalysts and a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. The catalytic activity of Ru-based catalysts was investigated at different Ru loading amount and different support structure. The obtained result indicated that 2 wt% loaded Ru-based catalyst supported on ${\alpha}-Al_2O_3$ showed high activity in low temperature range and suppressed the methanation reaction. The developed prototype fuel processor showed thermal efficiency of 78% as a HHV basis with methane conversion of 92%. CO concentration below 10 ppm in the produced gas is achieved with separate preferential oxidation unit under the condition of $[O_2]/[CO]=2.0$. The partial load operation have been carried out to test the performance of fuel processor from 40% to 80% load, showing stable methane conversion and CO concentration below 10 ppm. The durability test for the daily start-stop and 8 h operation procedure is under investigation and shows no deterioration of its performance after 50 start-stop cycles. In addition to the system design and development.

Syngas Production by Partial Oxidation Reaction over Ni-Pd/CeO2-ZrO2 Metallic Monolith Catalysts (Ni-Pd/CeO2-ZrO2 금속모노리스 촉매체를 사용한 부분산화반응에 의한 합성가스 제조)

  • Yang, Jeong Min;Choe, Jeong-Eun;Kim, Yong Jin;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.319-324
    • /
    • 2013
  • The partial oxidation reaction of methane was investigated to produce syngas with $Ni/CeO_2-ZrO_2$, $Ni-Ru/CeO_2-ZrO_2$ and $Ni-Pd/CeO_2-ZrO_2$ catalysts. Honeycomb metallic monolith was applied in order to obtain high catalytic activity and stability in partial oxidation reforming. The catalysts were characterized by XRD and FE-SEM. The influence of various catalysts on syngas production was studied for the feed ratio (O/C), GHSV and temperature. Among the catalysts used in the experiment, the $Ni-Pd/CeO_2-ZrO_2$ catalyst showed the highest activity. The 99% of $CH_4$ conversion was obtained at the condition of T=$900^{\circ}C$, GHSV=10,000 $h^{-1}$ and feed ratio O/C=0.55. It was confirmed that $H_2$ yield increased slightly as O/C ratio increased, while CO yield remained almost constant. Also, $CH_4$ conversion decreased as GHSV increased. It was found that the safe range of GHSV for high $CH_4$ conversion was estimated to be less than 10,000 $h^{-1}$.

Biomethanol Conversion from Biogas Produced by Anaerobic Digestion (혐기소화에 의한 Biogas 생산과 Biomethanol 전환에 관한 고찰)

  • Nam, Jae Jak;Shin, Joung Du;Hong, Seung Gil;Hahm, Hyun Sik;Park, Woo Kyun;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.93-103
    • /
    • 2006
  • Biogas is a byproduct after anaerobic digestion of organic materials and has been used as an energy source for heating and generating electricity. Demands of methanol for fuel mixed with gasoline and reactant in biodiesel production are steadily being increased. In this review, we summarized recent advancements in direct partial oxidation of methane to methanol with the brief history of methanol synthesis. The steam reforming and the catalytic oxidation of methane to methanol were compared, the former of which are mainly used in industrial scale and the latter in a stage of research and development. On the basis of this review, the possibility of methanol conversion from biogas was proposed in the aspects of the technological feasibility and the economical practicability.

  • PDF

Catalyst Carriers Preparation and Investigation of Catalytic Activities for Partial Oxidation of Methane to Hydrogen over Ru Impregnated on SPK and SPM Catalysts (메탄의 부분산화반응으로부터 수소제조를 위한 촉매담체(SPK, SPM) 제조 및 Ru 담지 촉매의 활성도 조사)

  • Seo, Ho Joon;Fan, Shijian;Kim, Yong Sung;Jung, Do Sung;Kang, Ung Il;Cho, Yeong Bok;Kim, Sang Chai;Kwon, Oh-Yun;Sunwoo, Chang Shin;Yu, Eui Yeon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.581-584
    • /
    • 2008
  • The catalyst carriers of the mesoporous layer compounds were prepared to carry out the partial oxidation of methane(POM) to hydrogen. The catalytic activities of POM to hydrogen were investigated over Ru(3)/SPK and Ru(3)/SPM catalyst in a fixed bed flow reactor under atmosphere. In addition, the catalysts and carriers were characterized by BET, TEM, TPR. The BET surface areas of the silica-pillared $H^+-kenyaite$(SPK) and the silica-pillared $H^+-magadite$(SPM) were $760m^2/g$ and $810m^2/g$, repectively, and the average pore sizes were 3.0 nm and 2.6 nm, repectively. The nitrogen adsorption isotherms were type IV with developed hysteresis. The TEM showed that the mesoporous layer compounds were formed well. The Ru(3)/SPK and the Ru(3)/SPM catalyst were obtained high hydrogen yields(90%, 87%), and were kept constant high hydrogen yields even about 60 hours at 973 K, $CH_4/O_2=2$, $1.25{\times}10^{-5}g-Cat.hr/ml$. The TPR peaks of Ru(3)/SPK and the Ru(3)/SPM catalyst showed the similar reducibilities around 453 K and 413 K. It could be suggested that SPK and SPM had the physicochemical properties as oxidation catalyst carries from these analysis data.

Effect of La in Partial Oxidation of Methane to Hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) Catalysts (M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) 촉매상에서 수소 제조를 위한 메탄의 부분산화반응에서 La의 효과)

  • Seo, Ho Joon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.757-761
    • /
    • 2019
  • The catalytic yields of POM to hydrogen over M(1)-Ni(5)/AlCeO3 (M = La, Ce, Y) were investigated using a fixed bed flow reactor under atmosphere. The crystal phase behavior of reduced La(1)-Ni(5)/AlCeO3 catalysts before and after the reaction were studied via XRD analysis. FESEM and EDS analyses were further performed to show the uniformed distribution of La, Ni, and Ce metal particles on the catalyst surface. XPS results showed O2-, O22- species and metal ions such as Ce3+, Ce4+, La3+ and Ni2+ etc. were on the catalyst surface. When 1 wt% of La was added to Ni(5)/AlCeO3 catalyst, Ni2p3/2 and Ce3d5/2 increased 52.7 and 6.3%, respectively. The yield of hydrogen on the La(1)-Ni(5)/AlCeO3 catalyst was 89.1%, which was much better than that of M(1)-Ni(5)/AlCeO3 (M = Ce, Y). As Ce4+ ions of CeO2 produced by the reaction of AlCeO3 with oxygen were substitute to La3+, it made oxygen vacancies in the lattice and further improved the hydrogen yield by increasing the dispersion of Ni atoms with strong metal-support interaction (SMSI) effect.

Partial Oxidation of Methane to $H_2$ Over Pd/Ti-SPK and Pd/Zr-SPK Catalysts and Characterization (Pd/Ti-SPK과 Pd/Zr-SPK 촉매상에서 수소 생산을 위한 메탄의 부분산화반응과 촉매의 특성화)

  • Seo, Ho-Joon;Kang, Ung-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.648-652
    • /
    • 2010
  • Catalytic activities of the partial oxidation of methane (POM) to hydrogen were investigated over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK in a fixed bed flow reactor (FBFR) under atmosphere, and the catalysts were characterized by BET, XPS, XRD. The BET surface areas, pore volume and pore width of Horvath-Kawaze, micro pore area and volume of t-plot of Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were $284m^2/g$, $0.233cm^3/g$, 3.9 nm, $30m^2/g$, $0.015cm^3/g$ and $396m^2/g$, $0.324cm^3/g$, 3.7nm, $119m^2/g$, $0.055cm^3/g$, repectively. The nitrogen adsorption isotherms were type IV with hysteresis. XPS showed that Si 2p and O 1s core electronlevels of Ti-SPK and Zr-SPK substituted Ti and Zr shifted to slightly lower binding energies than SPK. The oxidation states of Pd on the surface of catalysts were $Pd^0$ and $Pd^{+2}$. XRD patterns showed that crystal structures of fresh catalyst changed amorphous into crystal phase after reaction. The conversion and selectivity of POM to hydrogen over Pd(5)/Ti-SPK and Pd(5)/Zr-SPK were 77, 84% and 78, 72%, respectively, at 973 K, $CH_4/O_2$ = 2, GHSV = $8.4{\times}10^4mL/g_{cat}{\cdot}h$ and were kept constant even after 3 days in stream. These results confirm superior activity, thermal stability, and physicochemical properties of catalyst in POM to hydrogen.

Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts (고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응)

  • Lim, Steven S.;Haller, Gary L.
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.443-454
    • /
    • 2013
  • Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically $V^{5+}$, $Co^{2+}$, and $Ni^{2+}$-incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.