• Title/Summary/Keyword: Catalytic metal substrate

Search Result 71, Processing Time 0.023 seconds

Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Pseudomonas pseudoalcaligenes KF707에서 유래한 protocatechuate 3,4-dioxygenase 의 저해 및 화학적 메커니즘)

  • Kang, Taekyeong;Kim, Sang Ho;Jung, Mi Ja;Cho, Yong Kweon
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2015
  • We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with $K_{is}$ values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a $K_{is}$ value of 1.57 mM and a $K_{ii}$ value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with $K_{is}$ values of 55.7 mM, 0.22 mM, and 15.64 mM, and $K_{ii}$ values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. $FeCl_{2}$ was the best competitive inhibitor with a $K_{is}$ value of $29{\mu}M$. $FeCl_{3}$, $MnCl_{2}$, $CoCl_{2}$, and $AlCl_{3}$ were also competitive inhibitors with $K_{is}$ values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.