• Title/Summary/Keyword: Catalytic metal

Search Result 626, Processing Time 0.026 seconds

Properties of Chorismate Mutase from intrasporangium sp. (Intrasporangium속 방선균의 Chorismate Mutase 성질)

  • 조원대;신광순;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.4
    • /
    • pp.310-315
    • /
    • 1988
  • Two isoenzymes of chorismate mutase(E.C.5.4.99.5) designated as chorismate mutase I(CM I) and chorismate mutase II(CM II), were detected and partially purified from a sp. of intrasporangium isolated from soil. CM I and CM II had pH optima of pH 6.5 and 8.0, respectively and showed the same temperature optimum of 45$^{\circ}C$. The activation energy of the enzymatic reaction was estimated to be 14.7kcal/ mole with CM I and 10.8kcal/mole with CM II. The affinity of isoenzyme CM I for substrate(Km= 1.35mM) was almost the same level as that of CM II(Km = 1.22mM). Both isoenzymes were stable at pH values ranged from pH 6.5 to 9.0, but rapidly denaturated at temperatures above 45$^{\circ}C$. CM II was activated about 7$^{\circ}C$ of its activity by $Ba^{++}$ or $Mg^{++}$ while CM I was slightly inhibited by the same metal ions. Thiol compounds were found not to be necessary for stability of the two enzymes but Co$^{++}$ and EDTA had a little stabilizing effect on CM II only. p-Chloromercuribenzoate strongly inactivated the activities of both enzymes but the reducing agents such as dithiothreitol and L-cysteine protected them against the pCMB inhibition.

  • PDF

Molecular cloning, purification, expression, and characterization of β-1, 4-endoglucanase gene (Cel5A) from Eubacterium cellulosolvens sp. isolated from Holstein steers' rumen

  • Park, Tansol;Seo, Seongwon;Shin, Teaksoon;Cho, Byung-Wook;Cho, Seongkeun;Kim, Byeongwoo;Lee, Seyoung;Ha, Jong K.;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.607-615
    • /
    • 2018
  • Objective: This study was conducted to isolate the cellulolytic microorganism from the rumen of Holstein steers and characterize endoglucanase gene (Cel5A) from the isolated microorganism. Methods: To isolate anaerobic microbes having endoglucanase, rumen fluid was obtained from Holstein steers fed roughage diet. The isolated anaerobic bacteria had 98% similarity with Eubacterium cellulosolvens (E. cellulosolvens) Ce2 (Accession number: AB163733). The Cel5A from isolated E. cellulolsovens sp. was cloned using the published genome sequence and expressed through the Escherichia coli BL21. Results: The maximum activity of recombinant Cel5A (rCel5A) was observed at $50^{\circ}C$ and pH 4.0. The enzyme was constant at the temperature range of $20^{\circ}C$ to $40^{\circ}C$ but also, at the pH range of 3 to 9. The metal ions including $Ca^{2+}$, $K^+$, $Ni^{2+}$,$Mg^{2+}$, and $Fe^{2+}$ increased the endoglucanase activity but the addition of $Mn^{2+}$, $Cu^{2+}$, and $Zn^{2+}$ decreased. The Km and Vmax value of rCel5A were 14.05 mg/mL and $45.66{\mu}mol/min/mg$. Turnover number, Kcat and catalytic efficiency, Kcat/Km values of rCel5A was $96.69(s^{-1})$ and 6.88 (mL/mg/s), respectively. Conclusion: Our results indicated that rCel5A of E. cellulosolvens isolated from Holstein steers had a broad pH range with high stability under various conditions, which might be one of the beneficial characteristics of this enzyme for possible industrial application.

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

Synthesis of Chromium Nitride and Evaluation of its Catalytic Property (크롬 질화물(CrN)의 합성 및 촉매특성에 관한 연구)

  • Lee, Yong-Jin;Kwon, Heock-Hoi
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.451-457
    • /
    • 2006
  • We synthesized phase pure CrN having surface areas up to $47m^2/g$ starting from $CrCl_{3}$ with $NH_{3}$. Thermal Gravimetric Analysis coupled with X-ray diffraction was carried out to identify solid state transition temperatures and the phase after each transition. In addition, the BET surface areas, pore size distributions, and crystalline diameters for the synthesized materials were analyzed. Space velocity influenced a little to the surface areas of the prepared materials, while heating rate did not. We believe it is due to the fast removal of reaction by-products from the system. Temperature programmed reduction results revealed that the CrN was hardly passivated by 1% $O_{2}$. Molecular nitrogen was detected from CrN at 700 and $950^{\circ}C$, which may be from lattice nitrogen. In temperature programmed oxidation with heating rate of 10 K/min in flowing air, oxidation started at or higher than $300^{\circ}C$ and resulting $Cr_{2}O_{3}$ phase was observed with XRD at around $800^{\circ}C$. However the oxidation was not completed even at $900^{\circ}C$. CrN catalysts were highly active for n-butane dehydrogenation reaction. Their activity is even higher than that of a commercial $Pt-Sn/Al_{2}O_{3}$ dehydrogenation catalyst in terms of volumetric reaction rate. However, CrN was not active in pyridine hydrodenitrogenation.

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.

Pd/Pd3Fe Alloy Catalyst for Enhancing Hydrogen Production Rate from Formic Acid Decomposition: Density Functional Theory Study (개미산 분해 반응에서 수소 생산성 증대를 위한 Pd/Pd3Fe 합금 촉매: 범밀도 함수 이론 연구)

  • Cho, Jinwon;Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Ham, Hyung Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.270-274
    • /
    • 2017
  • Formic acid has been known as one of key sources of hydrogen. Among various monometallic catalysts, hydrogen can be efficiently produced on Pd catalyst. However, the catalytic activity of Pd is gradually reduced by the blocking of active sites by CO, which is formed from the unwanted indirect oxidation of formic acid. One of promising solutions to overcome such issue is the design of alloy catalyst by adding other metal into Pd since alloying effect (such as ligand and strain effect) can increase the chance to mitigate CO poisoning issue. In this study, we have investigated formic acid deposition on the bimetallic $Pd/Pd_3Fe$ core-shell nanocatalyst using DFT (density functional theory) calculation. In comparison to Pd catalyst, the activation energy of formic acid dehydrogenation is greatly reduced on $Pd/Pd_3Fe$ catalyst. In order to understand the importance of alloying effects in catalysis, we decoupled the strain effect from ligand effect. We found that both strain effect and ligand effect reduced the binding energy of HCOO by 0.03 eV and 0.29 eV, respectively, compared to the pure Pd case. Our DFT analysis of electronic structure suggested that such decrease of HCOO binding energy is related to the dramatic reduction of density of state near the fermi level.

Catalytic Carbonization of Biomass and Nonisothermal Combustion Reactivity of Torrefied Biomass (바이오매스 촉매 탄화 및 반탄화 바이오매스의 비등온 연소 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.725-731
    • /
    • 2018
  • The effects of catalysts addition on the carbonization reaction of biomass have been studied in a thermogravimetric analyzer (TGA). The sample biomasses were Bamboo and Pine. The catalysts tested were K, Zn metal compounds. The carbonization reactions were tested in the nonisothermal condition from the room temperature to $850^{\circ}C$ at a heating rate $1{\sim}10^{\circ}C/min$ on the flowing of $N_2$ purge gases. Also, the effects of catalyst on the torrefaction were tested in the temperature condition of 220, 250, $280^{\circ}C$ at 30 min. Combustion characteristic for the torrefied catalyst biomass were studied in the nonisothermal conditions of $200{\sim}850^{\circ}C$. As the results, the initial decomposition temperatures of the volatile matters ($T_i$) and the temperature of maximum reaction rate ($T_{max}$) were decreased with increasing the catalyst amounts in the sample biomass. The char amounts remained after carbonization at $400^{\circ}C$ increased with the catalyst amounts. Therefore catalysts addition can be decreased the energy for carbonization process and improved the heating value of product char. The catalysts reduced the optimum torrefaction conditions from $250^{\circ}C$ to $220^{\circ}C$. The torrefied catalyst biomass have lower activated energy from 46.5~58.7 kJ/mol to 25.1~27.0 kJ/mol in the nonisothermal combustion reaction.

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst (뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교)

  • Jo, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.

Leaching of Vanadium and Tungsten from Spent SCR Catalysts for De-NOx by Soda Roasting and Water Leaching Method (소다배소(焙燒) 및 수침출법(水浸出法)에 의한 탈질용(脫窒用) 폐(廢) SCR 촉매(觸媒)로부터 바나듐과 텅스텐 침출(浸出))

  • Kim, Hye-Rim;Lee, Jin-Young;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.65-73
    • /
    • 2012
  • Selective catalytic reduction(SCR) catalysts are obtained from de-NOx system of thermoelectric power plant. A process was developed for valuable metals such as vanadium and tungsten recovery from spent SCR catalyst by using soda roasting followed by water leaching. Spent SCR catalyst having $V_2O_5$(1.23 mass %) and $WO_3$(7.73 mass %). For getting soluble metal forms of the targeted metals like vanadium and tungsten soda roasting process was implemented. In soda roasting process, sodium carbonate added 5 equivalent ratio at roasted temperature $850^{\circ}C$ with 120 min roasted time for $544{\mu}m$ particle size of spent SCR catalyst. After soda roasting process moved to water leaching for roasted spent catalyst. Before leaching process the roasted spent catalyst was grinded up to $-45{\mu}m$ size. The leaching time is 30 min at $40^{\circ}C$ temperature, 10 % pulp density. The final leaching efficiency obtained 46 % of vanadium and 92 % of tungsten from present process.

Removal of NOx from Graphene based Photocatalyst Ceramic Filter (그래핀 기반 광촉매 담지 세라믹필터에서 질소산화물(NOx)의 제거)

  • Kim, Yong-Seok;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.600-605
    • /
    • 2022
  • In this study, nitrogen oxide (NOx) removal experiments were performed using a graphene based ceramic filter coated with a V2O5-WO3-TiO2 catalyst. Graphene oxide (GO) was prepared by Hummer's method using graphite, and the reduced graphene oxide was produced by reducing with hydrazine (N2H4). Vanadium (V), Tungsten (W), and Titanium (Ti) were coated by the sol-gel method, and then a metal oxide-supported filter was prepared through a calcination process at 350 ℃. A NOx removal efficiency test was performed for the catalytic ceramic filters with UV light in a humid condition. When graphene oxide (GO) and reduced graphene oxide (rGO) were present on the filter, the NOx removal efficiency was superior to that of the conventional ceramic filter. Most likely, this is due to an improvement in the adsorption properties of NOx molecules on graphene coated surfaces. As the concentration of graphene increased, higher NOx removal efficiency was confirmed.