• Title/Summary/Keyword: Catalytic deactivation

Search Result 91, Processing Time 0.02 seconds

Control of NOx Emission in a Copper-Alumina Catalytic Filter Reactor (Copper-Alumina 촉매필터 반응기에서의 NOx 제어)

  • 류동길;이상권
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.263-264
    • /
    • 2002
  • 연소시설에서 배연가스중의 NOx 배출을 저감하기 위하여 선택적 촉매 환원법(SCR)과 선택적 무촉매 환원법(SNCR)이 널리 이용되고 있다. 이러한 촉매처리는 Pt와 같은 귀금속이 포함된 촉매 하에서 암모니아를 환원제로 사용하였으나, R와 같은 귀금속의 경우 배연가스내에 함유된 중금속이나 비소(Arsenic), SOx, 비산재(fly ash)등에 의해 쉽게 비활성화(deactivation)되는 단점이 있다(Sumitra R et al., 1995). (중략)

  • PDF

Selective Oxidation of Cyclohexane at Low Temperature by Fe-Pd Bicatalytic Systems: $FeCl_2$-Pd/alumina System and Pd/$Fe_2O_3$ System

  • 전기원;Lingaiah Nakka;김상범;이규완
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1269-1273
    • /
    • 1997
  • The system which employs iron, palladium, molecular oxygen and hydrogen as a model mono-oxygenase, has been investigated to develop a new method for selective cyclohexane oxidation uner mild conditions. This system provides much higher yield and selectivity for the formation of cyclohexanol and cyclohexanone compared to that of the existing industrial method. When the catalytic system, FeCl2-Pd/alumina, was employed, the oxidation system required acetone as a solvent to be efficient and acidifying the solvent by a little addition of acetic acid or HCl made the system more efficient. The Pd catalyst was recyclable without a significant deactivation but the recycling of ferrous chloride showed the decrease in the activity. On the other hand, the heterogeneous catalytic system, Pd/Fe2O3 could be recovered easily and reused after drying treatment.

Performance Management of a DeNOx System for Stationary Sources and Regeneration Strategies of DeNOx Catalysts (고정원 탈질시스템의 성능관리와 탈질촉매 재생전략)

  • Kim, Moon Hyeon
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.141-153
    • /
    • 2016
  • Numerous stationary NOx emission sources have employed a suitable deNOx technology that is typically selective catalytic reduction (SCR) of NOx by NH3 over V2O5/TiO2-based catalysts with on-demand monolithic structures. These structured catalysts undergo a time-on-deterioration of deNOxing activity on site. Thus, we need more efficient, more deactivation-tolerant, more economic deNOx systems and for which, their performance management is essential. This review has covered details of strategies to successfully manage the performance of SCR catalysts and timely replace them to new or rejuvenated ones. Key considerations to maintain the catalyst activity will be reviewed. Details of the sequential addition of new catalysts and the replacement of life-end catalysts and their regeneration will be discussed with general guidances to determine the time for such a replacement. Finally, a better way to get more economic approaches to deNOx system management will be proposed here.

Hydrogen Production from Ethanol Steam Reforming over SnO2-K2O/Zeolite Y Catalyst

  • Lee, Jun-Sung;Kim, Ji-Eun;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1912-1920
    • /
    • 2011
  • The $SnO_2$ with a particle size of about 300 nm instead of Ni is used in this study to overcome rapid catalytic deactivation by the formation of a $NiAl_2O_4$ spinal structure on the conventional Ni/${\gamma}$-$Al_2O_3$ catalyst and simultaneously impregnated the catalyst with potassium (K). The $SnO_2-K_2O$ impregnated Zeolite Y catalyst ($SnO_2-K_2O$/ZY) exhibited significantly higher ethanol reforming reactivity that that achieved with $SnO_2$ 100 and $SnO_2$ 30 wt %/ZY catalysts. The main products from ethanol steam reforming (ESR) over the $SnO_2$-$K_2O$/ZY catalyst were $H_2$, $CO_2$, and $CH_4$, with no evidence of any CO molecule formation. The $H_2$ production and ethanol conversion were maximized at 89% and 100%, respectively, over $SnO_2$ 30 wt %-$K_2O$ 3.0 wt %/ZY at 600 $^{\circ}C$ for 1 h at a $CH_3CH_2OH:H_2O$ ratio of 1:1 and a gas hourly space velocity (GHSV) of 12,700 $h^{-1}$. No catalytic deactivation occurred for up to 73 h. This result is attributable to the easier and weaker of reduction of Sn components and acidities over $SnO_2-K_2O$/ZY catalyst, respectively, than those of Ni/${\gamma}$-$Al_2O_3$ catalysts.

NOx Removal of Mn Based Catalyst for the Pretreatment Condition and Sulfur Dioxide (전처리 조건 및 황산화물에 대한 Mn-Cu계 촉매의 탈질특성)

  • Park, Kwang-Hee;You, Seung-Han;Park, Young-Ok;Kim, Sang-Wung;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1923-1930
    • /
    • 2012
  • Mn-Cu catalysts were tested for selective catalytic reduction of NOx with NH3. Influence of initial reaction temperature was studied for NOx conversion in which reaction temperature was changed three patterns. NOx conversion of catalysts calcined at 200, 300 and $340^{\circ}C$ was measured during the changing temperature. Hydrogen conversion efficiency of calcined catalysts was also measured in the $H_2$-TPR system. The deactivation effect of $SO_2$ on catalyst was investigated with the on-off control of $SO_2$ supply. The catalyst which calcined above $340^{\circ}C$ was somewhat deactivated with thermal shock. The reason of deactivation was draw from the results of surface area and hydrogen conversion.

An Experimental Study on Catalytic Reformer with Direct Spraying of Fuel and Water for SOFC (고체산화물 연료전지용 연료.물 직접 분무식 촉매 개질기에 관한 실험적 연구)

  • Lee, Dae-Keun;Dong, Sang-Geun;Yang, Je-Bok;Kim, Hak-Joo;Jung, Heon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.260-265
    • /
    • 2006
  • An experimental study on the catalytic reformer adopted in the auxiliary power unit system of solid oxide fuel cell was conducted. A 3-fluid nozzle, by which liquid fuel such as diesel, water and air are sprayed and uniformed mixed, was designed and used in this study. An electrically heated monolith inserted in the reformer was used for the vaporization of fuel and water in the transient state of reformer. The reformer uses the partial oxidizing reaction at the catalyst and the supply of water prevents the flame combustion in the spraying zone and lessens the deactivation of catalyst. The result showed that the reforming of liquid fuel can be started by the electrically heated monolith and the 3-fluid nozzle can give the uniform mixing of fuel, water and air. It was also found that the reformer fueled by n-hexadecane can make the reformate, at best, containing $H_2$ at 15.5% and CO at 11.5% that are used as fuel in the solid oxide fuel cell.

  • PDF

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives (Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성)

  • Choi, Byung-Chul;Lee, Choon-Hee;Jeong, Jong-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

Catalytic decomposition of $N_2O$ to develop monopropellant thruster ($N_2O$ 단일 추진제 추력기 개발을 위한 촉매 분해 시험)

  • Jin, Jung-Kun;Kosdaulefov, Assylkhan;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.269-272
    • /
    • 2009
  • Catalytic decomposition of nitrous oxide was investigated experimentally. Two noble metal catalyst (Pt, Ir) were chosen to decompose nitrous oxide. Each catalyst was tested with different chamber pressure and preheating temperature. Ir decomposed $N_2O$ at lower temperature ($230^{\circ}C$) and suitable for $N_2O$ decomposition. In addition, the minimum required preheating temperature decreased as the chamber pressure increased. However, deactivation of Ir catalyst was observed during the experiments.

  • PDF

Catalysis of carbon black for hydrogen production by butane decomposition reaction (부탄의 직접분해로부터 수소 생산을 위한 카본블랙의 촉매적 작용)

  • Yoon, Suk-Hoon;Han, Gi-Bo;Park, No-Kuk;Ryu, Si-Ok;Yoon, Ki-June;Han, Gui-Young;Lee, Tae-Jin
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.70-77
    • /
    • 2006
  • The butane decomposition over the catalyst is an attractive method for the hydrogen production. The objective of the work was investigated the catalysis of carbon black in butane decomposition reaction. The Butane decomposition was performed over carbon black catalyst in a range of $500-1100^{\circ}C$. The butane conversion of thermal decomposition and catalytic decomposition were increased with increasing the reaction temperature The butane conversion of the thermal decomposition was higher than the butane conversion of the catalytic decomposition. Hydrogen and methane were mostly observed in the butane decomposition over $1000^{\circ}C$. Especially, the hydrogen yield was steadily increased with raising the reaction temperature, It could be known that the hydrogen yield of the catalytic decomposition was higher than one of the thermal cracking because the hydrogen productivity was improved by the catalyst. The deactivation of the catalyst was not observed in the reactivity test. The surface and crystalline of the fresh and used catalysts were characterized by TEM, BET surface area and XRD analysis, respectively. The fresh carbon black particles had mostly smoothly round-shaped surfaces. In the surface of the carbon black after the reaction, the deposited carbon was formed as the protrusion-shaped carbon and the cone-shaped. The proper peaks of carbon black appeared in XRD analysis.

  • PDF