• Title/Summary/Keyword: Catalytic Reactor

Search Result 408, Processing Time 0.03 seconds

MULTI-SCALE SIMULATION FOR DESIGN OF A CATALYTIC MULTI-TUBULAR REACTOR (다관식 촉매 반응기 설계를 위한 multi-scale simulation)

  • Shin Sang-Baek;Im Ye-Hoon;Ha Kyoung-Su;Urban Zbigniew;Han Sang-Phil
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.49-53
    • /
    • 2005
  • This paper presents a multi-scale hybrid simulation for the design of a catalytic multi-tubular reactor with high performance. The multi-tubular reactor consists of shell and a large number of tubes in which various catalytic chemical reactions occur. To consider fluid dynamics in the shell-side and kinetics in the tube-side at the same time, commercial CFD package and process simulation tool are coupled. This hybrid approach allowed us to predict many kinds of meaningful results such as tube center temperature profile, heat transfer coefficients on the tube wall, temperature rise of cooling medium, pressure drop through shell and tube side, concentration profile of each chemical species along the tube, and so on., and to achieve the optimal reactor design.

  • PDF

An Experimental Study on the Performances of a Coupled Reactor with Catalytic Combustion and Steam Reforming for SOFC and MCFC (SOFC와 MCFC에 적용하기 위한 촉매연소-수증기 개질이 통합된 반응기의 성능에 관한 실험적 연구)

  • Ghang, Taegyu;Kim, Yongmo;Lee, Sangmin;Ahn, Kookyoung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.364-377
    • /
    • 2014
  • The performances of a coupled reactor in which a steam reformer and a catalytic combustor were mounted simultaneously had been investigated and compared. The combustible offgas exhausted from the anode of SOFC and MCFC were utilized as heat sources for the endothermic steam methane reforming. The catalytic combustion was used in order to burn the combustible offgas. Thermal energy released by the catalytic combustion is directly transferred to the reformer surrounding the combustor. The various operational conditions such as fuel utilization rate, steam to carbon ratio, amount of catalysts, fuel cell loads were changed. And operating variables were comprehensively identified by sensitivity analysis. The fundamental results from this experimental study show the potential abilities of the coupled reactor. Therefore the results will be of help to design and manufacture the more better coupled reactor in the future.

A Numerical Analysis on the Flow Characteristics inner Catalytic Reactor for Marine SCR System (선박용 SCR 시스템의 촉매반응기 내부 유동특성에 관한 수치해석)

  • Yi, C.S.;Suh, J.S.;Yun, J.H.;Lim, B.J.;Park, C.D.;Chung, K.Y.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.125-126
    • /
    • 2012
  • The key issues for the reduction technologies of the exhaust gas from diesel engine being developed are to reduce particulate matters and NOx. Performance of NOx removal in SCR process depends on such various factors as catalyst factors(catalyst composition, shape, velocity, etc.), exhaust gas temperature and velocity distribution. In this study checked flow uniformity with the flow characteristics in the SCR reactor by using STAR CCM+. The pressure drop of experiment and simulation had similar result more than 90% at catalytic Cell. Also, flow uniformity calculated about 0.9036 ant 1st catalytic ind SCR reactor.

  • PDF

Experimental Study on Millimeter Scale Two Phase Catalytic Reactor (밀리미터 스케일의 이상 분해 반응기에 대한 실험적 연구)

  • Cho, Chung-Hun;Lee, Dae-Hoon;Kwon, Se-JIn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • Experiment study on a down scaled two-phase catalytic reactor is presented. As a preliminary step for the development of catalytic reactor, nano-particulate catalyst was prepared. Perovskite La$\_$0.8/Sr$\_$0.2/CoO$_3$is chosen and synthesized as a catalyst considering superior catalytic performance in reduction and oxidation process where oxygen is involved among the reagent. Reactor that has a scale of 2${\times}$10${\times}$25mm was made by machining of A1 block as a layered structure considering further extension to micro-machining. Hydrogen peroxide of 70wt% was adopted as reactant and was provided to the reactor loaded with 1.5 g of catalyst. Reactant flow rate was varied by precision pump with a range of 0.15cc/min to 17.2cc/min. Temperature distribution within reactor was recorded by 3 thermocouples and total amount of liquid product was measured. Temperature distribution and factors that affect temperature were observed and relation between temperature distribution and production rate was also analyzed. Relative time scale plays a significant role in the performance of the reactor. To obtain steady state operation, appropriate ratio of flow rate, catalyst mass and reactor geometry is required and furthermore to get more efficient production rate temperature distribution should be evenly distributed. The database obtained by the experiment will be used as a design parameter for micro reactor.

Effects of Size on the Performance of Heat-Recirculating Swiss-roll Combustors (크기에 따른 스위스 롤 형태 연소기의 성능 변화)

  • Oh, Hwa-Young;Kim, Youn-Ho;Huh, Hwan-Il;Ronney, Paul D.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.46-49
    • /
    • 2006
  • Extinction limits and combustion temperatures in heat-recirculating excess enthalpy reactors employing both gas-phase and catalytic reaction have been examined previously, with and emphasis Reynolds number (Re) effects and possible application to microscale combustion devices. However, Re is not the only parameter needed to characterize reactor operation. In particular, the use of a fixed reactor size implies that residence time and Re cannot be adjusted independently. To remedy this situation, in this work geometrically similar reactors of different physical sizes were tested with the aim of independently determining the effects of Re and Da. It is found that the difference between catalytic and non-catalytic combustion limits narrow as scale decreases. Moreover, to assess the importance of wall thermal conductivity, reactors of varying wall thickness were studied. From these results the effect of scale on microscale reactor performance and implications for practical microcombustion devices are discussed.

  • PDF

Effects of Reaction Conditions on the Performance of Catalytic Pyrolysis of LDPE in a Semi-Batch Reactor (LDPE 반회분식 촉매열분해에서 조업조건이 반응 특성에 미치는 영향)

  • Na, Jeong-Geol;Leem, Chel-Hyen;Choi, Hwi-Kyoung;Chung, Soo-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.79-82
    • /
    • 2006
  • Fueled by ballooning oil prices, waste plastics are now regarded as being cheap and abundant renewable sources, removing their stigma of dirty wastes Catalytic pryolysis of plastics in liquid phase allows recovery of light fuel oil as well as green treatment of polymerics wastes, and therefore significant efforts have been devoted to this research field. In this study, catalytic Pyrolysis of LDPE was carl ied out in semi-batch reactor which equipped a unit of separation and recirculation. The effect of react ion conditions were examined by analyzing liquid oil yield and carbon number distribution of products

  • PDF

Catalytic Pyrolysis of Various Carbon Number Feed Oil Using a Spouted Bed Reactor (Spouted Bed Reactor를 이용한 다양한 탄소수 원료유 촉매 열분해)

  • Yoo, Kyeong Seun;Park, Sung Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.627-630
    • /
    • 2011
  • We focus on a catalytic process based on direct injection method that can produce high-quality oils of gasoline and kerosene with various carbon-number feed oils. The reaction characteristics of a commercial catalyst were analyzed using a spouted bed reactor. Decane and pentadecane were used to compare the characteristics of the fixed bed and the spouted bed reactor. The yield of gasoline plus kerosene was highest at the reaction temperature of $550^{\circ}C$. For the spouted bed reactor, the at-a-pulse injection was more effective for catalytic cracking of feed oils than multiple consecutive injections. The reaction activity became higher as the carbon number of feed oil is larger.

A development of reactor design software for De-NOx system using the selective catalytic reduction method (선택적 촉매 환원법을 이용한 De-NOx 시스템의 반응로 설계 전산프로그램 개발)

  • 정경열;오상훈;동은석;이수태;류길수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.187-191
    • /
    • 2002
  • The exhaust gas from electric power stations, incinerators and industrial boilers contains considerable amount of harmful nitric oxide which causes air pollution. Selective catalytic reduction system with ammonia as a reductant(NH$_{3}$ SCR) have been applied to remove NOx since 1970. it is widely accepted that the NH$_{3}$ SCR process is the best method for the removal of NOx. In this paper the design of SCR reactor based on the NOx displacement is considered and the design program of SCR reactor is developed. The newly developed design program for de-NOx system maybe used in practice.

  • PDF

Decomposition of Acetonitrile Using a Planar Type Dielectric Barrier Discharge Reactor Packed with Adsorption and Catalyst Materials (평판형 유전체 장벽 방전 반응기에서 충진물질에 따른 아세토나이트릴의 분해 특성)

  • 김관태;송영훈;김석준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.2
    • /
    • pp.157-165
    • /
    • 2003
  • A combined process of non-thermal plasma and catalytic technique has been investigated to treat $CH_3$CN gas in the atmosphere. A planar type dielectric barrier discharge (DBD) reactor has been used to generate the non-thermal plasma that produces various chemically active species, such as O, N, OH, $O_3$, ion, electrons, etc. Several different types of the beads. which are Molecular Sieve (MS) 5A, MS 13X, Pt/alumina beads, are packed into the DBD reactor, and have been tested to characterize the effects of adsorption and catalytic process on treating the $CH_3$CN gas in the DBD reactor. The test results showed that the operating power consumption and the amounts of the by-products of the non-thermal plasma process can be reduced by the assistance of the adsorption and catalytic process.

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF