• Title/Summary/Keyword: Catalytic Metal Substrate

Search Result 71, Processing Time 0.025 seconds

Purification and Characterization of NAD-Dependent n-Butanol Dehydrogenase from Solvent-Tolerant n-Butanol-Degrading Enterobacter sp. VKGH12

  • Veeranagouda, Y.;Benndorf, Dirk;Heipieper, Hermann J.;Karegoudar, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.663-669
    • /
    • 2008
  • The solvent-tolerant bacterium Enterobacter sp. VKGH12 is capable of utilizing n-butanol and contains an $NAD^+$-dependent n-butanol dehydrogenase (BDH). The BDH from n-butanol-grown Enterobacter sp. was purified from a cell-free extract (soluble fraction) to near homogeneity using a 3-step procedure. The BDH was purified 15.37-fold with a recovery of only 10.51, and the molecular mass estimated to be 38 kDa. The apparent Michaelis-Menten constant ($K_m$) for the BDH was found to be 4 mM with respect to n-butanol. The BDH also had a broad range of substrate specificity, including primary alcohols, secondary alcohols, and aromatic alcohols, and exhibited an optimal activity at pH 9.0 and $40^{\circ}C$. Among the metal ions studied, $Mg^{2+}$ and $Mn^{2+}$ had no effect, whereas $Cu^{2+},\;Zn^{2+}$, and $Fe^{2+}$ at 1 mM completely inhibited the BDH activity. The BDH activity was not inhibited by PMSF, suggesting that serine is not involved in the catalytic site. The known metal ion chelator EDTA had no effect on the BDH activity. Thus, in addition to its physiological significance, some features of the enzyme, such as its activity at an alkaline pH and broad range of substrate specificity, including primary and secondary alcohols, are attractive for application to the enzymatic conversion of alcohols.

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

Superhydrophilicity of Titania Hybrid Coating Film Imposed by UV Irradiation without Heat-treatment (저온 경화형 초친수성 티타니아 하이브리드 졸의 제조와 친수성 특성 평가에 관한 연구)

  • Kim, Won-Soo;Park, Won-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.29 no.1
    • /
    • pp.121-131
    • /
    • 2007
  • A preparation process's conditions of aqueous sol which contains anatase-type nano titania particles with photocatalyic properties was established by using Yoldas process, so called, DCS(Destabilization of Colloidal Solution) process in this study. And crystal size change and phase transformation of titania particles in aqueous titania sol depending on reaction conditions was investigated by a light scattering method and XRD analysis of frozen dried powders, respectively. This sol with photo catalytic nano titania particles was used to the following hydrophilic hybrid coating film's fabrication and its properties was evaluated. Subsequently, for coating film using the above mentioned aqueous titania sol, non-aqueous titania sol was prepared without any chemical additives and its time stability according to aging time was investigate. By using the above mentioned aqueous titania sol and non-aqueous sol, a complex oxide coating sol for metal and ceramic substrate and a organic-inorganic hybrid coating sol for polymer substrate was prepared and it's hydrophilicity depending on UV irradiation conditions was evaluated. As a conclusions, the following results were obtained. (1)Aqueous titania sol The average particle size of titania in formed aqueous titania sol was distributed between 20$\sim$90nm range depending on reaction conditions. And the crystal phase of titania powders obtained by frozen drying method was changed from amorphous state to anatase and subsequently transformed to rutile crystal phase and it is attributed to concentration gradient in aqueous sol. (2)Non-aqueous titania sol Non-aqueous titania sol was prepared using methanol as a solvent and a little distilled water for hydrolysis and nitric acid as a catalyst were used. The obtained non-aqueous titania sol was stable at room temperature for 20 days. Additionally, non-aqueous titania sol with addition of chealating reagent such as acethylaceton and ethylene glycol prolonged the stability of sol by six months. (3)Complex sol and hybrid sol with super hydrophilicity The above mentioned aqueous titania sol as a main photocataylic component and non-aqueous titania sol as a binder for coating process was used to prepare a complex sol used for metal, ceramic and wood material substrate and also to prepare the organic-inorganic hybrid sol for polymer substrate such as polycarbonate and polyethylene, in which process APMS(3-Aminopropyltrimethoxysilane), GPTS(3-Glycidoxypropyl-trimethoxysilane) as a hydrophilic silane compound and HEMA(2-Hydroxyethyl methacrylate) as a forming network in hybrid coating film were used. The hybrid coating film such as prepared through this process showed a superhydrophilicity below 1$10^{\circ}$ depending on processing conditions and a pencil's hardness over 6 H.

  • PDF

Chemical Modification of 5-Lipoxygenase from the Korean Red Potato

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.172-178
    • /
    • 2000
  • The lipoxygenase was purified 35 fold to homogeneity from the Korean red potato by an ammonium sulfate precipitation and DEAE-cellulose column chromatography. The simple purification method is useful for the preparation of pure lipoxygenase. The molecular weight of the enzyme was estimated to be 38,000 by SDS-polyacrylamide gel electrophoreses and Sepharose 6B column chromatography. The purified enzyme with 2 M $(NH_4)_2SO_4$ in a potassium phosphate buffer, pH 7.0, was very stable for 5 months at $-20^{\circ}C$. Because the purified lipoxygenase is very stable, it could be useful for the screening of a lipoxygenase inhibitor. The optimal pH and temperature for lipoxygenase purified from the red potato were found to be pH 9.0. and $30^{\circ}C$, respectively. The Km and Vmax values for linoleic acid of the lipoxygenase purified from the red potato were $48\;{\mu}M$ and $0.03\;{\mu}M$ per minute per milligram of protein, respectively. The enzyme was insensitive to the metal chelating agents tested (2 mM KCN, 1 and 10mM EDTA, and 1 mM $NaN_3$), but was inhibited by several divalent cations, such as $Cu^{++}$, $Co^{++}$ and $Ni^{++}$. The essential amino acids that were involved in the catalytic mechanism of the 5-lipoxygenase from the Korean red potato were determined by chemical modification studies. The catalytic activity of lipoxygenase from the red potato was seriously reduced after treatment with a diethylpyrocarbonate (DEPC) modifying histidine residue and Woodward's reagent (WRK) modifying aspartic/glutamic acid. The inactivation reaction of DEPC (WRK) processed in the form of pseudo-first-order kinetics. The double-logarithmic plot of the observed pseudo-first-order rate constant against the modifier concentration yielded a reaction order 2, indicating that two histidine residues (carboxylic acids) were essential for the lipoxygenase activity from the red potato. The linoleic acid protected the enzyme against inactivation by DEPC(WRK), revealing that histidine and carboxylic amino acids residues were present at the substrate binding site of the enzyme molecules.

  • PDF

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.

Purification and Characterization of Endo-$\beta$-1,4 Mannanase from Aspergillus niger gr for Application in Food Processing Industry

  • Naganagouda, K.;Salimath, P.V.;Mulimani, V.H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1184-1190
    • /
    • 2009
  • A thermostable extracellular $\beta$-mannanase from the culture supernatant of a fungus Aspergillus niger gr was purified to homogeneity. SDS-PAGE of the purified enzyme showed a single protein band of molecular mass 66 kDa. The $\beta$-mannanase exhibited optimum catalytic activity at pH 5.5 and $55^{\circ}C$. It was thermostable at $55^{\circ}C$, and retained 50% activity after 6 h at $55^{\circ}C$. The enzyme was stable at a pH range of 3.0 to 7.0. The metal ions $Hg^{2+}$, $Cu^{2+}$, and $Ag^{2+}$ inhibited complete enzyme activity. The inhibitors tested, EDTA, PMSF, and 1,10-phenanthroline, did not inhibit the enzyme activity. N-Bromosuccinimide completely inhibited enzyme activity. The relative substrate specificity of enzyme towards the various mannans is in the order of locust bean gum>guar gum>copra mannan, with $K_m$ of 0.11, 0.28, and 0.33 mg/ml, respectively. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food-processing industry.

Mg2+-dependency of the Helical Conformation of the P1 Duplex of the Tetrahymena Group I Ribozyme

  • Lee, Joon-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1937-1940
    • /
    • 2008
  • The P1 duplex of Tetrahymena group I ribozyme is the important system for studying the conformational changes in folding of ribozyme. The formation of the P1 duplex between IGS and substrate RNA and the catalytic activity of ribozyme require a variety of metal ions such as $Mg^{2+}$ and $Mn^{2+}$. In order to investigate the effect of the $Mg^{2+}$ concentration on the conformation of the P1 duplex, the NMR study was performed as a function of $Mg^{2+}$ concentration. This study revealed that the less stable AU-rich region formed duplex at $50{^{\circ}C}$ under high $Mg^{2+}$ concentration condition but melts out under low $Mg^{2+}$ concentration condition. It was also found that in the active conformation under 10 mM $MgCl_2$ condition, the unstable central G${\cdot}$U wobble pair maintains the significant base pairing up to $50{^{\circ}C}$. This study provides the information of the unique feature of the P1 duplex structure and the roll of $Mg^{2+}$ ion on the formation of the active conformation.

A review: controlled synthesis of vertically aligned carbon nanotubes

  • Hahm, Myung-Gwan;Hashim, Daniel P.;Vajtai, Robert;Ajayan, Pulickel M.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.185-193
    • /
    • 2011
  • Carbon nanotubes (CNTs) have developed into one of the most competitively researched nano-materials of this decade because of their structural uniqueness and excellent physical properties such as nanoscale one dimensionality, high aspect ratio, high mechanical strength, thermal conductivity and excellent electrical conductivity. Mass production and structure control of CNTs are key factors for a feasible CNT industry. Water and ethanol vapor enhance the catalytic activity for massive growth of vertically aligned CNTs. A shower system for gas flow improves the growth of vertically aligned single walled CNTs (SWCNTs) by controlling the gas flow direction. Delivery of gases from the top of the nanotubes enables direct and precise supply of carbon source and water vapor to the catalysts. High quality vertically aligned SWCNTs synthesized using plasma enhance the chemical vapor deposition technique on substrate with suitable metal catalyst particles. This review provides an introduction to the concept of the growth of vertically aligned SWCNTs and covers advanced topics on the controlled synthesis of vertically aligned SWCNTs.

Purification and Characterization of a Bacillus sp. DG0303 Thermostable $\alpha$-Glucosidase with Oligo-l,6-glucosidase Activity

  • Park, Jong-Sung;Kim, Il-Han;Lee, Yong-Eok
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.270-276
    • /
    • 1998
  • Extracellular ${\alpha}$-glucosidase was purified to homogeneity from moderately thermophilic Bacillus sp. DG0303. The thermostable ${\alpha}$-glucosidase was purified by ammonium sulfate fractionation, ion-exchange chromatography, preparative polyacrylamide gel electrophoresis (PAGE), and electroelution. The molecular weight of the enzyme was estimated to be 60 kDa by SDS-PAGE. The optimum temperature for the action of the enzyme was at $60^{\circ}C$. It had a half-life of 35 min at $60^{\circ}C$. The enzyme was stable at the pH range of 4.5~7.0 and had an optimum pH at 5.0. The enzyme preparation did not require any metal ion for activity. The thermostable ${\alpha}$-glucosidase hydrolyzed the ${\alpha}$-1,6-linkages in isomaltose, isomaltotriose, and panose, and had little or no activity with maltooligosaccharides and other polysaccharides. The $K_m$ (mM) for p-nitrophenyl-${\alpha}$-D-glucopyranoside (pNPG), panose, isomaltose, and isomaltotriose were 4.6, 4.7, 40.8, and 3.7 and the $V_{max}$(${\mu}mol{\cdot}min^-1$$mg^-1$) for those substrates were 5629, 1669, 3410, and 1827, respectively. The N-terminal amino acid sequence of the enzyme was MERVWWKKAV. Based on its substrate specificity and catalytic properties, the enzyme has been assigned to be an oligo-1,6-glucosidase.

  • PDF

Fabrication and Structural Properties of Ge-Sb-Te Thin Film by MOCVD for PRAM Application (상변화 메모리 응용을 위한 MOCVD 방법을 통한 Ge-Sb-Te 계 박막의 증착 및 구조적인 특성분석)

  • Kim, Ran-Young;Kim, Ho-Gi;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.411-414
    • /
    • 2008
  • The germanium films were deposited by metal organic chemical vapor deposition using $Ge(allyl)_4$ precursors on TiAlN substrates. Deposition of germanium films was only possible with a presence of $Sb(iPr)_3$, which means that $Sb(iPr)_3$ takes a catalytic role by a thermal decomposition of $Sb(iPr)_3$ for Ge film deposition. Also, as Sb bubbler temperature increases, deposition rate of the Ge films increases at a substrate temperature of $370^{\circ}C$. The GeTe thin films were fabricated by MOCVD with $Te(tBu)_2$ on Ge thin film. The GeTe films were grown by the tellurium deposition at $230-250^{\circ}C$ on Ge films deposited on TiAlN electrode in the presence of Sb at $370^{\circ}C$. The GeTe film growth on Ge films depends on the both the tellurium deposition temperature and deposition time. Also, using $Sb(iPr)_3$ precursor, GeSbTe films with hexagonal structures were fabricated on GeTe thin films. GeSbTe films were deposited in trench structure with 200 nm*120 nm small size.