• Title/Summary/Keyword: Catalysts

Search Result 2,498, Processing Time 0.037 seconds

Inhibition of Side Reactions Forming Dimers of Diols in the Selective Hydrogenation of Methacryl Aldehyde (메타아크릴 알데히드의 선택적 수소화에서 2가 알코올의 이합체 형성 부반응 억제효과)

  • Kook-Seung Shin;Mi-Sun Cha;Kyoung-Ku Kang;Chang-Soo Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2023
  • The homogeneous catalyst, Ru-MACHO-BH, selectively performs hydrogenation reactions only on the carbonyl group of α, β-unsaturated aldehyde compounds with extremely high reactivity and selectivity. However, the hydrogenation of α, β-unsaturated aldehydes involves a heterogeneous Diels-Alder reaction, resulting in the formation of significant amounts of byproducts, such as dimers. In this study, we used the Ru-MACHO-BH catalyst (Carbonyl hydrido (tetrahydroborato) [bis (2-diphenyl phosphino ethyl) amino] ruthenium(II)) to selectively hydrogenate the carbonyl group of a specific type of α, β-unsaturated aldehyde called methacryl aldehyde, leading to the synthesis of methallyl alcohol. Simultaneously, we applied diols to inhibit the formation of byproducts. The results demonstrate that monoethylene glycol can significantly reduce the formation of diols. Based on these results, we effectively suppressed the formation of dimers containing vinyl groups in methacryl aldehyde by using hydroquinone, which can efficiently inhibit the chemical interaction of vinyl groups. Consequently, the conversion rate of methacryl aldehyde was increased. Ultimately, by reducing the amount of the expensive homogeneous catalyst Ru-MACHO-BH to 1/10, we achieved a selectivity of over 90% and a yield of over 80% for the desired product, methallyl alcohol. These results provide a method to minimize yield reduction while reducing the usage of expensive catalysts, thereby improving cost-effectiveness. We expect that the reaction could be applied to various kinds of selective hydrogenation and has been successfully run on an industrial scale.

Why Genuine Luxury Brands Are Consumed? Counterfeits? Examining Consumer Identification

  • Suh, Hyunsuk
    • Asia Marketing Journal
    • /
    • v.14 no.3
    • /
    • pp.69-102
    • /
    • 2012
  • Owing to increased number of luxury brand users, both genuine and counterfeit luxury product consumption continues to increase every year. Luxury brand is defined as use or display of a particular branded products which brings the ownership prestige apart from its functional utility(Grossmand and Shapiro 1988). Some luxury brands have imitations sold in marketplace due to their popularity. These imitations or counterfeits have been jumping on the bandwagon of the upturn in sales of their originals. The purpose of our study is to understand consumer's underlying motives to consume luxury brands, genuine and or counterfeits. To do this, we propose functional theories of attitudes, decision-making styles, and life attitudes to form the determining causes for different consumption choices of luxury brands: genuine brands, counterfeit brands, both genuine and counterfeit brands, and no consumption on luxury brands types. In proposed causal pathways, we examine moderated effects of socio-psychological factors to further investigate if consumer profiles would exert influences in causal relationships. From the existing theories of functional attitudes: value-expressive and social-adjustive attitudes, we developed and introduced a new measure of rationality-consumptive attitude. From the existing eight decision-making characteristics of consumer styles inventory(CSI), three measures of high-quality, hedonic-shopping, and price-shopping styles were primarily applied in the study along with newly introduced measure of 'high-price' being added, which makes four total. Seven life attitude measures of life purpose, life control, will to meaning, goal seeking, future mean to fulfill, life satisfaction, and religiosity were applied. Finally, such socio-psychological measures as age, gender, marital status, income, and age-gap between couples were assumed to function as moderators. With 430 valid study samples, ages from 20s to 50s, with more females(316) than males(114), with average personal possessions of 5 genuine and 9 counterfeit luxury brands, we conducted questionnaire survey. Results indicated that social-adjustive function is totally disappeared in the relationship due to current social trend of widespread consumptions on both genuine and counterfeit brands which in turn, make consumers feel less special on wearing or carrying them unlike in the past. Self-expressive function and rationality-consumptive functions act as strong catalysts for genuine brand consumption and counterfeit brand consumption, respectively. On consumers' decision-making styles, high-price sublation is the most powerful indicator anticipating counterfeit consumption, even more powerful than personal incomes. In life attitude, the overall model fit was not validated, and only life control and life satisfaction are proven to be significant on both genuine and counterfeit product consumptions. Employment of socio-psychological factors in the model improved understanding of users further. Young consumers tend to go for genuine products over counterfeits. Consumers in different income groups; low, medium and high, all significantly consume genuine products for reasons of different decision-making styles. The results indicated that consumers whose personal disposition is predisposed to consume products in the form of reflection of his or her personality, go only for genuine brands for quality reason, while consumers who rationally consume products for its function or usability, go only for counterfeits for high-price sublation reason. Meanwhile, both product users support for high-price orientation who are not well off.

  • PDF

Tin Oxide-modulated to Cu(OH)2 Nanowires for Efficient Electrochemical Reduction of CO2 to HCOOH and CO (SnO2/Cu(OH)2 Nanowires 전극을 이용한 전기화학적 이산화탄소 환원 특성)

  • Chaewon Seong;Hyojung Bae;Sea Cho;Jiwon Heo;Eun Mi Han;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.91-97
    • /
    • 2023
  • Electrochemical (EC) CO2 reduction is a promising method to convert CO2 into valuable hydrocarbon fuels and chemicals ecofriendly. Here, we report on a facile method to synthesize surface-controlled SnO2/Cu(OH)2 nanowires (NWs) and its EC reduction of CO2 to HCOOH and CO. The SnO2/Cu(OH)2 NWs (-16 mA/cm2) showed superior electrochemical performance compared to Cu(OH)2 NWs (-6 mA/cm2) at -1.0 V (vs. RHE). SnO2/Cu(OH)2 NWs showed the maximum Faradaic efficiency for conversion to HCOOH (58.01 %) and CO (29.72 %). The optimized catalyst exhibits a high C1 Faradaic efficiency stable electrolysis for 2 h in a KHCO3 electrolyte. This study facilitates the potential for the EC reduction of CO2 to chemical fuels.

Physico-chemical effects of cerium oxide on catalytic activity of CeO2-TiO2 prepared by sol-gel method for NH3-SCR (CeO2가 졸겔법으로 합성한 CeO2-TiO2계 SCR용 촉매의 활성에 미치는 물리화학적 영향)

  • Kim, Buyoung;Shin, Byeongkil;Lee, Heesoo;Chun, Ho Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.320-324
    • /
    • 2013
  • The effects of $CeO_2$ on catalytic activity of $CeO_2-TiO_2$ for the selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyseis. $CeO_2-TiO_2$ catalysts were synthesized with three different additions, 10, 20, and 30 wt% of $CeO_2$, by the sol-gel method. The XRD peaks of all specimens were assigned to a $TiO_2$ phase (anatase) and the peaks became broader with the addition of $CeO_2$ because it was dispersed as an amorphous phase on the surface of $TiO_2$ particles. The specific surface area of $TiO_2$ increased with the addition of $CeO_2$ from $60.6306m^2/g$ to $116.2791m^2/g$ due to suppression of $TiO_2$ grain growth by $CeO_2$. The 30 wt% $CeO_2-TiO_2$ catalyst, having the strongest catalytic acid sites ($Br{\Phi}nsted$ and Lewis), showed the highest $NO_x$ conversion efficiency of 98 % at $300^{\circ}C$ among the specimens. It was considered that $CeO_2$ contributes to the improvement of the $NO_x$ conversion of $CeO_2-TiO_2$ catalyst by increasing specific surface area and catalytic acid sites.

A Study on Characteristics of Lincomycin Degradation by Optimized TiO2/HAP/Ge Composite using Mixture Analysis (혼합물분석을 통해 최적화된 TiO2/HAP/Ge 촉매를 이용한 Lincomycin 제거특성 연구)

  • Kim, Dongwoo;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • In this study, it was found that determined the photocatalytic degradation of antibiotics (lincomycin, LM) with various catalyst composite of titanium dioxide ($TiO_2$), hydroxyapatite (HAP) and germanium (Ge) under UV-A irradiation. At first, various type of complex catalysts were investigated to compare the enhanced photocatalytic potential. It was observed that in order to obtain the removal efficiencies were $TiO_2/HAP/Ge$ > $TiO_2/Ge$ > $TiO_2/HAP$. The composition of $TiO_2/HAP/Ge$ using a statistical approach based on mixture analysis design, one of response surface method was investigated. The independent variables of $TiO_2$ ($X_1$), HAP ($X_2$) and Ge ($X_3$) which consisted of 6 condition in each variables was set up to determine the effects on LM ($Y_1$) and TOC ($Y_2$) degradation. Regression analysis on analysis of variance (ANOVA) showed significant p-value (p < 0.05) and high coefficients for determination value ($R^2$ of $Y_1=99.28%$ and $R^2$ of $Y_2=98.91%$). Contour plot and response curve showed that the effects of $TiO_2/HAP/Ge$ composition for LM degradation under UV-A irradiation. And the estimated optimal composition for TOC removal ($Y_2$) were $X_1=0.6913$, $X_2=0.2313$ and $X_3=0.0756$ by coded value. By comparison with actual applications, the experimental results were found to be in good agreement with the model's predictions, with mean results for LM and TOC removal of 99.2% and 49.3%, respectively.

Transition Metal Dichalcogenide Nanocatalyst for Solar-Driven Photoelectrochemical Water Splitting (전이금속 디칼코제나이드 나노촉매를 이용한 태양광 흡수 광화학적 물분해 연구)

  • Yoo, Jisun;Cha, Eunhee;Park, Jeunghee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.25-38
    • /
    • 2020
  • Photoelectrochemical water splitting has been considered as the most promising technology for generating hydrogen energy. Transition metal dichalcogenide (TMD) compounds have currently attracted tremendous attention due to their outstanding ability towards the catalytic water-splitting hydrogen evolution reaction (HER). Herein, we report the synthesis method of various transition metal dichalcogenide including MoS2, MoSe2, WS2, and WSe2 nanosheets as excellent catalysts for solar-driven photoelectrochemical (PEC) hydrogen evolution. Photocathodes were fabricated by growing the nanosheets directly onto Si nanowire (NW) arrays, with a thickness of 20 nm. The metal ion layers were formed by soaking the metal chloride ethanol solution and subsequent sulfurization or selenization produced the transition metal chalcogenide. They all exhibit excellent PEC performance in 0.5 M H2SO4; the photocurrent reaches to 20 mA cm-2 (at 0 V vs. RHE) and the onset potential is 0.2 V under AM1.5 condition. The quantum efficiency of hydrogen generation is avg. 90%. The stability of MoS2 and MoSe2 is 90% for 3h, which is higher than that (80%) of WS2 and WSe2. Detailed structure analysis using X-ray photoelectron spectroscopy for before/after HER reveals that the Si-WS2 and Si-WSe2 experience more oxidation of Si NWs than Si-MoS2 and Si-MoSe2. This can be explained by the less protection of Si NW surface by their flake shape morphology. The high catalytic activity of TMDs should be the main cause of this enhanced PEC performance, promising efficient water-splitting Si-based PEC cells.

Biodiesel production using lipase producing bacteria isolated from button mushroom bed (양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산)

  • Kim, Heon-Hee;Kim, Chan-Kyum;Han, Chang-Hoon;Lee, Chan-Jung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.

Fenton Oxidation of Landfill Leachate by $Fe^0,\;Fe^{2+},\;Fe^{3+}\;/\;H_2O_2$ Systems ($Fe^0$, $Fe^{2+}$, $Fe^{3+}$ / $H_2O_2$ 시스템을 이용한 침출수의 Fenton 산화반응)

  • Park, Sung-Ho;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.402-408
    • /
    • 2005
  • This investigation aimed at selecting the optimum catalyst and reaction conditions used in Fenton oxidation for landfill leachate treatment and was carried out at ambient temperature using a lab-scale experiment. The investigation led to the following results: 1) The optimum pH and dose for each iron catalyst were as follows: $Fe^{2+}\;=\;1,200\;mg/L$, $H_2O_2\;=\;1,200\;mg/L$, initial pH=3.0; $Fe^{3+}\;=\;1,200\;mg/L$, $H_2O_2\;=\;1,500\;mg/L$, initial pH=4.5; $Fe^0\;=\;1,200\;mg/L$, $H_2O_2\;=\;900\;mg/L$, initial pH=4.0, respectively. 2) The progress of Fenton oxidation could be instrumentally monitored by measuring redox potential evolution during leachate oxidation, thus, indicating the possibility of an on-line process monitoring. 3) A simple acid-base titration of Fenton-treated leachate proved that a relevant fraction of by- products formed during the treatment was made of acidic compounds in the optimum reaction condition for each catalyst used, thus demonstrating that the higher the extent of Fenton oxidation the greater was the amount of acids formed. 4) With the aim of selecting the optimum catalyst among $Fe^0$, $Fe^{2+}$ and $Fe^{3+}$, removal efficiency of each parameter in the optimum reaction conditions was considered. Although $Fe^{3+}$ was higher than other catalysts($Fe^0$, $Fe^{2+}$) in removal efficiency, $Fe^0$ was a optimum catalyst with a view of cost effectiveness.

Kinetics of esterification of food waste oil by solid acid catalyst and reaction optimization (고체 산 촉매를 이용한 고산가 음폐유의 에스테르화 반응 동역학 연구 및 반응 최적화)

  • Lee, Hwa-Sung;Lee, Joon-Pyo;Lee, Jin-Suk;Kim, Deog-Keun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.683-693
    • /
    • 2017
  • Transport biofuels have been recognized as a promising means to resolve the following issues like global warming, oil depletion and environmental pollutions. Among various biofuels, biodiesel has several advantages such as less emission of air pollutants and higher cetane values compared to diesel oil. Demand for biodiesel in Korea is increasing that leads to higher dependence on the imported feedstocks. Therefore, it is important to utilize the waste materials collected domestically for biodiesel production. Food waste oil collected in waste treatment facility has not been used for biodiesel production due to high free fatty contents in the oil. In this work, biodiesel conversion of food waste oil by Amberlyst 15 was studied. Synthetic and actual food waste oils have been used in the study. First, the effects of the major operating parameters including reaction temperature, methanol to oil molar ratio and catalyst loading on the conversion rates and yields were determined with synthetic waste oil. Kinetic modelling work was also done to determine the activation energy of the reaction. From the work, optimization reaction conditions were determined to be 383K, 1: 26.1 for methanol molar ratio to oil, 10 wt.% for catalyst loading and 360 min for reaction time. Activation energy of the reaction is determined to be 29.75 kJ/mol, lower than those reported in the previous works. So the solid catalyst, Amberlyst 15, was more efficient for esterification than the solid catalysts employed in the other works. Agitation rates have the negligible effects on the conversion rates and yields. With the identified optimization conditions, conversion of the actual food waste oil was also carried out. The esterification yield of actual food waste oil in 60 min was 13% lower than that of synthetic waste oil but the final yields in 240 min were similar each other, 98.12% for synthetic oil and 97.62% for actual waste oil.

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.