• Title/Summary/Keyword: Catalyst dispersion

Search Result 163, Processing Time 0.022 seconds

Improvement of Platinum Particle Dispersion on Porous Electrode for Phosphoric Acid Fuel Cell (연료전지용 다공성전극에 있어서 백금촉매의 분산성개선)

  • Park, Jung-Il;Kim, Jo-Woong;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.224-231
    • /
    • 1990
  • To improve the dispersion of platinum catalyst, the effects of carbon black surface treatment, solvents, surfactants, and ultrasonic homogenizing were examined. Upon introducing the hydrophilic groups acting as an anchorage center of the catalyst on the surface of carbon black by oxidation, the migrating and growing of platinum particles(or ions) during reduction could be restricted. When mixed solvents, surfactants, or ultrasonic homogenizer were used to disperse catalysts on the carbon black, the dispersion of catalyst could be improved, due to the good permeation of chloroplatinic acid through the pore of carbon black. Among the impregnation methods, the method using ultrasonic homogenizer with mixed solvent was the most excellent. Using this method the particle sized could be minimized in less than $30A^{\circ}$ and distributed homogeneously.

  • PDF

$Ni/\gamma -Al_2O_3$ Catalyst Prepared by Liquid Phase Oxidation for Carbon Dioxide Reforming of Methane

  • 정경수;조병율;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.89-94
    • /
    • 1999
  • Carbon dioxide reforming of methane on Ni/γ-Al2O3 catalyst was studied. A new 10 wt% Ni/γ-Al2O3 catalyst prepared by the liquid phase oxidation method (L10O) exhibited much higher activity as well as resistances to both sintering and coke formation during the reaction than the catalyst prepared by the conventional impregnation method (D10). The electrically strong attractive interaction between nickel and support during the liquid phase oxidation process and the resultant high nickel dispersion made the L10 have superior activity and stability to the D10. To elucidate the results, the experiments with nickel catalysts on the other supports as well as 7-AI203 were performed. The effect of sodium as a promoter was also studied.

Influence of Active Metal Dispersion over Pt/TiO2 Catalyst on NH3-SCO Reaction Activity (Pt/TiO2 촉매의 활성금속 분산도가 NH3-SCO 반응활성에 미치는 영향)

  • Shin, Jung Hun;Kwon, Dong Wook;Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.22-27
    • /
    • 2018
  • In this study, the effect of physical properties of $Pt/TiO_2$ on $NH_3$-selective catalytic oxidation (SCO) reaction at $200{\sim}350^{\circ}C$ was investigated. CO-chemisoption and BET analysis were carried out to verify physical properties of $Pt/TiO_2$. By characterizing physical properties of $Pt/TiO_2$ with respect to the Pt loading, the metal dispersion degree decreased as a function of the Pt loading amount. Also, the catalyst having a higher metal dispersion showed an excellent conversion efficiency of $NH_3$ to $N_2$. Since the specific surface area of the support affects the metal dispersion, $Pt/TiO_2$ catalysts were prepared using $TiO_2$ with different physical properties. As a result, it was confirmed that the catalyst having a wide specific surface area exhibited a excellent conversion of $NH_3$ to $N_2$.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction IV. Modification of $CoMo/γ-Al_2O_3$ Catalyst with K

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1239-1244
    • /
    • 2000
  • A study of K addition to the catalyst of CoMo/ ${\gamma}-Al_2O_3$ was studied. The catalyst with 10 at% of K to Mo atoms in 3C10M, the catalyst added 3 wt% CoO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, showed the highest activity for water gas shift reaction. The addition of K retarded the reducibility of cobalt-molybdenum catalysts. It gave, however, good dispersion and large BET surface area to the catalysts which were attributed to the disappearance of polymolybdate clustyer such as $Mo_7O_{24}^{6-}$ and the formation of small Mo$O_4^{2-}$ cluster. It was confirmed by the analyses of pore size distribution, activation energy, Raman spectroscopy, and electron diffraction. The activation energies and the frequency factors of the catalysts 3C10M and 5KC10M (the catalyst added 5 at% K for Mo to the catalyst 3C10M) were 43.1 and 47.8 kJ/mole, and 4,297 and 13,505 $sec^{-1}$, respectively. These values were also well correlated with our suggestion. These phenomena were attributed to the direct interaction between K and CoMo oxides irrelevant to the support.

Characterization of Hydrogen Adsorption for the Silicalite-Supported Platinum Catalysts (실리카라이트에 담지된 백금촉매의 수소흡착특성 연구)

  • Ahn, Do Hee;Paek, Seung Woo;Lee, Han Soo;Chung, Hongsuk
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.410-415
    • /
    • 1996
  • It is well known that the heavy water separation process using hydrogen isotope exchange reaction over the platinum catalyst is the most efficient. In this study, the Pt/silicalite catalysts were prepared and characterized by hydrogen adsorption in order to develop the hydrophobic platinum catalyst for hydrogen isotope exchange reaction. Silicalite was synthesized as support material and it was verified that silicalite is more hydrophobic than activated carbon and ZSM-5. Also the platinum was loaded on silicalite by conventional impregnation and ion-exchange method respectively. The platinum dispersion of Pt/silicalite catalysts was measured through hydrogen adsorption experiment. The dispersion is very low in the catalyst prepared by the impregnation method while it is very high with limited platinum content in the catalyst prepared by the ion-exchange method.

  • PDF

The Effect of Calcination Temperature of RuTi Catalysts on the Reaction Activity of NH3-SCO (RuTi 촉매의 소성온도가 NH3-SCO 반응활성에 미치는 영향)

  • Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.200-207
    • /
    • 2020
  • In this study, the effect of calcination temperature on the production of RuTi catalyst in NH3-SCO (selective catalytic oxidation) was investigated. The RuTi catalyst was prepared using the wet impregnation method, and calcined at 400~600 ℃ for 4 h in air condition. The catalysts were named RuTi x00 where x00 means the calcination temperature. According to XRD (X-Ray diffraction), TEM (transmission electron microscope), H2-TPR (H2-temperature programmed reduction) analyses, RuTi x00 catalysts displayed that the dispersion of active metal decreased via increasing the calcination temperature. The catalysts with low dispersion showed a decrease in the surface adsorption oxygen species (Oβ) and NH3 adsorption amount via XPS, and NH3-TPD analyses. Therefore, the RuTi 400 catalyst was well dispersed in the active metal on TiO2 surface, and also, the NH3 removal efficiency was excellent.

Modification of Carbon Nanotube for the Improvement of Dispersion and the Dispersion Characteristics of Carbon Nanotube in Polyurethane (분산성 향상을 위한 탄소나노튜브의 개질과 폴리우레탄과의 분산 특성)

  • Park, Kyung-Soon;Kim, Seung-Jin;Kim, Jeong-Hyun;Park, Jun-Hyeong;Kwon, Oh-Kyung
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • The thermal treatment for carbon nanotube was applied to remove the water, metal catalyst and other impurities in carbon nanotube. The surface of carbon nanotube was changed into open structure with acid treatment by mixed solution of $HNO_3$ and $H_2SO_4$. The dispersion property of the functionalized and modified carbon nanotube was assessed with naked eyes by dispersing it in DMF. Carbon nanotube mixd polyurethane film was made to estimate the dispersion property by reflectance of the film with UV-Vis spectrometer. Also the internal structure of carbon nanotube was observed with SEM and TEM and thermal pyrolysis property of the carbon nanotube was measured by TGA and DSC. The surface modification of carbon nanotube by thermal and acid treatments improved the dispersion property of carbon nanotube/polyurethane mixed materials.

Development of Pd/TiO2 Catalysts with La2O3 Addition and Study on the Performance Improvement of H2 Oxidation at Room Temperature (La2O3가 첨가된 Pd/TiO2 촉매의 개발 및 H2 상온산화 반응에서의 성능 향상 연구)

  • Lee, Dong Yoon;Kim, Sung Chul;Lee, Sang Moon;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.674-678
    • /
    • 2020
  • In this study, a Pd/TiO2 catalyst which oxidized H2 at room temperature without an additional energy source was prepared. And a specific surface area of TiO2 as a support was not proportional to H2 oxidation reaction performance of Pd/TiO2 catalyst. In addition La2O3 was added to Pd/TiO2 catalyst in order to evaluate the performance effect due to the change of catalysts physical properties. A Pd/La2O3-TiO2 was prepared by adding different amounts of La2O3 to TiO2 and CO chemisorption analysis was performed. Compared to the conversion rate (14% at 0.5% H2) of the Pd/TiO2(G) catalyst, the Pd/La2O3-TiO2 catalyst showed 74% which was improved by more than five times. It was found that the larger the metal dispersion of Pd as an active metal is, the more favorable to H2 oxidation reaction is. However, when the added La2O3 amount exceeded 10%, the catalyst performance decreased again. Finally, it was concluded that the physical properties of the Pd/La2O3-TiO2 catalyst have a dominant influence on the catalytic activity until 0.3~0.5% of injected H2 concentrations and the catalyst reaction rate was controlled by substance transfer from 1% or more concentrations of H2.

Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst (Ni 기반 촉매를 이용한 HI 분해 반응 특성)

  • KIM, JI HYE;PARK, CHU SIK;KIM, CHANG HEE;KANG, KYOUNG SOO;JEONG, SEONG UK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • HI decomposition reaction requires a catalyst for the efficient production of hydrogen as a key reaction for hydrogen production in sulfur-iodine thermochemical water-splitting (SI) cycle. As a catalyst used in the reaction, the performance of platinum catalyst is excellent. While, the platinum catalyst is not economical. Therefore, studies of a nickel catalyst that could replace platinum have been carried out. In this study, the characteristics of the catalytic HI decomposition on the amount of loaded nickel (Ni = 0.1, 0.5, 1, 3, 5, 10 wt%) were investigated. As the supported Ni amount increased up to 3 wt%, HI decomposition was found to increase in linear proportion. However, the conversion of $Ni/Al_2O_3$ catalyst loaded above 3 wt% was not linear. It was thought that the different HI decomposition characteristics was caused in the size and metal dispersion of Ni particles of catalyst. The physical property of catalyst before and after HI decomposition reaction was characterized by BET, chemisorption, XRD and SEM analysis.

Electrochemical Catalysts Test for Nano Pt Particles on Carbon Support Synthesized by a Polyol Process Parameter Control (폴리올 공정 제어에 의한 탄소기반 나노 Pt 촉매 담지 특성 평가)

  • Chae Lin Moon;Jin Woo Bae;Soon Mok Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.164-169
    • /
    • 2023
  • Nano Pt particles were dispersed on carbon-based supports by a polyol process for a catalyst application in a polymer electrolyte fuel cell. We tried to optimize the effect of pH on the electrostatic forces between the support and the Pt colloids. We investigated the relationship among the surface charges on the carbon support, the solution pH, and the concentration of a glycolate, and the Pt particle size. The produced catalyst with nano Pt particles on the support was evaluated by the long-term cyclic voltammetry (CV) performance test and compared with the results from a commercial catalyst. Our experimental results reveal that the pH-control can modify the particle size distribution and the dispersion of the nano Pt particles. This resulted in a cost-effective method for the synthesis of highly Pt loaded Pt/C catalysts for fuel cells better than a commercial catalyst system.