• 제목/요약/키워드: Catalyst:

검색결과 5,348건 처리시간 0.029초

삼원 촉매 담체의 확률론적 열피로 성능 평가 (Probabilistic Estimation of Thermal Fatigue Performance of Three-Way Catalyst Substrate)

  • 조석수
    • 대한기계학회논문집A
    • /
    • 제38권6호
    • /
    • pp.669-676
    • /
    • 2014
  • 국내 승용차용 삼원촉매담체의 경우 배기가스 변환 효율이나 압력 강하 등은 엔진 효율 측면에서 만족되고 있지만 열적 내구성은 요구 내구 수명을 만족시키지 못하여 차량정비현장에서 상당한 파손사고가 발견되고 있다. 본 논문에서는 이러한 현상의 원인을 밝히기 위하여 국내 승용차용 삼원촉매담체에서 발생되는 열응력을 온도측정자료와 단순한 열응력 모델을 이용하여 구하였으며 열피로 성능은 확정론적 강도가 아닌 확률과 크기 및 피로 인자를 고려한 확률론적 설계 강도로 평가함으로서 확정론적 설계 강도에 의한 열피로 성능 평가 방법을 극복하였다.

MEA 제조 방법에 따른 직접 메탄올 연료전지의 성능저하 현상 평가 (Effect of MEA fabrication on the performance degradation of DMFC)

  • 조윤환;조용훈;박현서;원호연;성영은
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.60-67
    • /
    • 2007
  • Catalyst coated membrane [CCM] type and catalyst coated substrate [CCS] type of membrane electrode assembly [MEA] were manufactured and evaluated their performance. Degradation test were conducted to find the difference of long term stability in two types of MEA and the factor for performance degradation problem occurred. Performance degradation test of single cell in two different types of MEA were carried out when current density was $200mA/cm^{2}$. The degradation test had proceeded for 230 hours and performance degradation was checked by I-V curve and impedance measurement at regular intervals. Also, MEA before/after operation and changes of catalyst layer were characterized by SEM, TEM, and XRD. Maximum power density of CCM type was higher than that of CCS type. Meanwhile, an increase of particle size of catalyst and an increase of impedance resistance after long term operation were observed. In the case of using CCM type MEA, the performance was deteriorated 38% of initial performance. In the case of using CCS type MEA, the performance was deteriorated 43% of initial performance. In consideration of difference of initial performance, performance of CCM type is higher than that of CCS type but both types had similar problems during degradation test.

  • PDF

The effects of Nafion$^{(R)}$ ionomer content in dual catalyst layer on the performances of PEMFC MEAs

  • 김근호;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.95.2-95.2
    • /
    • 2011
  • In order to achieve high performance and low cost for commercial applications, the development of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, must be optimized. Expensive platinum is currently used as an electrochemical catalyst due to its high activity. Although various platinum alloys and non-platinum catalysts are under development, their stabilities and catalytic activities, especially in terms of the oxygen reduction (ORR), render them currently unsuitable for practical use. Therefore, it is important to decrease platinum loading by optimizing the catalysts and electrode microstructure. In this study, we prepared several different MEAs (non-uniform Nafion$^{(R)}$ ionomer loading electrode) which have dual catalyst layers to find the optimal Nafion$^{(R)}$ ionomer distribution in the electrodes. We changed Nafion$^{(R)}$ ionomer content in the layers to find the ideal composition of the binder and Pt/C in the electrode. For MEAs with various ionomer contents in the anodes and cathodes, the electrochemical activity (activation overpotential) and the mass transport properties (concentration overpotential) were analyzed and correlated with the single cell performance. The dual catalyst layers MEA showed higher cell performance than uniformly fabricated MEA, especially at the high current density region.

  • PDF

Grafting 방법을 이용한 직접메탄올연료전지 애노드 촉매의 성능향상에 관한 연구 (An investigation on anode electrocatalysts using grafting method for improvement of DMFC performances)

  • 박정배;한국일;김하석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.413-416
    • /
    • 2006
  • PtRu catalyst is most widely used as anode catalyst for a direct methanol fuel cell(DMFC). To promote the efficiency of the catalysts, it Is important to increase the triple phase boundary. In this study, we have tried to increase the triple phase boundaries in preparing electrocatalysts of the fuel cells, based on the process of grafting a proton-conducting agent onto the catalyst This grafted proton-conducting agent can act as an ionomer like Nafion, currently widely used ionomer. First, we have prepared the 80wt% PtRu/Ketjen Black electrocatalyst by an improved colloidal method. And, we have grafted methylsulfonate groups $(-CH_2SO_3H)$ into the catalyst as proton-conducting agents. As results of cyclic voltammety and single cell test of the membrane electrode assembly (MEA), we can conclude that the activity of the grafted electrocatalysts is superior to that of conventional ones, in performance of DMFCs. For our further study, we will investigate the optimum ratio of catalyst/grafted proton conduct Ing agent with maximum performance of a DMFC.

  • PDF

액체추진제 분해촉매 장기성능시험장치 개발 및 평가방안 (Development of Long-Life Performance Test Equipment & Evaluation Plan for Hydrazine Decomposition Catalyst)

  • 김인태;김정훈;이재원;장기원;유명종;김수겸;이균호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.407-412
    • /
    • 2006
  • 하이드라진을 이용한 단일추진제 추력기에서 촉매의 성능은 추력기 및 전체 시스템의 임무수명시간을 결정하는 가장 중요한 요소 중의 하나이다. 이러한 촉매의 개발과정에 필수적으로 요구되는 것이 추력기의 연소시험을 통한 성능평가 과정으로 특히, 촉매의 수명시험에 해당하는 장기성능 검증시험을 통해 그 적용가능성을 판단하게 된다. 본 연구에서는 이를 위한 시험장치의 개발 및 시험/평가방안에 대해 기술하였다.

  • PDF

저급탄화수소 수증기 개질에 의한 수소 제조용 니켈계 촉매개발 (Development of Ni-based Catalyst for Hydrogen Production with Steam Reforming of Light Hydrocarbon)

  • 김대현;이상득;이병권;김명준;홍석인;문동주
    • 신재생에너지
    • /
    • 제4권4호
    • /
    • pp.80-87
    • /
    • 2008
  • Steam reforming of LPG was investigated over spc-Ni/MgAl catalyst in a temperature range of $600{\sim}850^{\circ}C$, feed molar ratio of $H_2O/C=1.0{\sim}3.0$, space velocity of $10,000{\sim}90,000h^{-1}$ and at atmospheric pressure. spc-Ni/MgAl catalyst was prepared by a co-precipitation method, whereas Ni/MgO and $Ni/Al_2O_3$ catalysts were prepared by an incipient wetness method. The characteristics of catalysts were analyzed by N2 Physisorption, CO chemisorption, XRD, TOF-SIMS, SEM and TEM techniques. The Ni/MgO and $Ni/Al_2O_3$ catalysts were deactivated by the formation of carbon. However, the spc-Ni/MgAl catalyst showed higher conversion and $H_2$ selectivity than the other catalysts, even though carbon was formed on the surface of the catalyst during the reaction under the tested reaction conditions.

  • PDF

In situ Photoacoustic Study of Water Gas Shift Reaction over Magnetite/Chromium Oxide and Copper/Zinc Oxide Catalysts

  • Byun, In-Sik;Choi, Ok-Lim;Choi, Joong-Gill;Lee, Sung-Han
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권11호
    • /
    • pp.1513-1518
    • /
    • 2002
  • Kinetic studies on the water-gas shift reaction catalyzed by magnetite/chromium oxide and copper/zinc oxide were carried out by using an in situ photoacoustic spectroscopic technique. The reactions were performed in a closed-circulation reactor system using a differential photoacoustic cell at total pressure of 40 Torr in the temperature range of 100 to $350^{\circ}C.$ The CO2 photoacoustic signal varying with the concentration of CO2 during the catalytic reaction was recorded as a function of time. The time-resolved photoacoustic spectra obtained for the initial reaction stage provided precise data of CO2 formation rate. The apparent activation energies determined from the initial rates were 74.7 kJ/mol for the magnetite/chromium oxide catalyst and 50.9 kJ/mol for the copper/zinc oxide catalyst. To determine the reaction orders, partial pressures of CO(g) and H2O(g) in the reaction mixture were varied at a constant total pressure of 40 Torr with N2 buffer gas. For the magnetite/chromium oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.93 and 0.18, respectively. For the copper/zinc oxide catalyst, the reaction orders with respect to CO and H2O were determined to be 0.79 and 0, respectively.

Alumina Supported Ammonium Dihydrogenphosphate (NH4H2PO4/Al2O3): Preparation, Characterization and Its Application as Catalyst in the Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles

  • Emrani, Anahita;Davoodnia, Abolghasem;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권7호
    • /
    • pp.2385-2390
    • /
    • 2011
  • Preparation of ammonium dihydrogenphosphate supported on alumina ($NH_4H_2PO_4/Al_2O_3$) and its primary application as a solid acid supported heterogeneous catalyst to the synthesis of 1,2,4,5-tetrasubstituted imidazoles by a one-pot, four-component condensation of benzil, aromatic aldehydes, primary amines, and ammonium acetate under thermal solvent-free conditions were described. The results showed that the novel catalyst has high activity and the desired products were obtained in high yields. Furthermore, the products could be separated simply from the catalyst, and the catalyst could be recycled and reused with only slight reduction in its catalytic activity. Characterization of the catalyst was performed by FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques.

Synthesis, Characterization and Application of Poly(4-Methyl Vinylpyridinium Hydroxide)/SBA-15 Composite as a Highly Active Heterogeneous Basic Catalyst for the Knoevenagel Reaction

  • Kalbasi, Roozbeh Javad;Kolahdoozan, Majid;Massah, Ahmadreza;Shahabian, Keinaz
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2618-2626
    • /
    • 2010
  • In this paper poly (4-methyl vinylpyridinium hydroxide)/SBA-15 composite was prepared as a highly efficient heterogeneous basic catalyst by in situ polymerization method for the first time. It was characterized by XRD, FT-IR, BET, TGA, SEM and back titration using NaOH. This catalyst exhibited the excellent catalytic activities for the Knoevenagel condensation of various aldehydes with ethyl cyanoacetate. Over this catalyst, ${\alpha},{\beta}$-unsaturated carbonyl compounds were obtained in the reasonable yield at $95^{\circ}C$ in 10 - 30 min in $H_2O$ as a solvent with a 100% selectivity to the condensation products. Catalyst could be easily recycled after the reaction and it could be reused without the significant loss of activity/selectivity performance. No by-product formation, high yields, short reaction times, mild reaction conditions and operational simplicity with reusability of the catalyst were the salient features of the present synthetic protocol. Presence of $H_2O$ as a solvent was also recognized as a "green method".

저온 플라즈마·촉매 복합공정을 이용한 트리클로로에틸렌의 분해에 관한 연구 (Decomposition of Trichloroethylene by Using a Non-Thermal Plasma Process Combined with Catalyst)

  • 목영선;남창모
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.269-275
    • /
    • 2003
  • A non-thermal plasma process combined with $Cr_2O_3/TiO_2$ catalyst was applied to the decomposition of trichloroethylene (TCE). A dielectric barrier discharge reactor operated with AC high voltage was used as the non-thermal plasma reactor. The effects of reaction temperature and input power on the decomposition of TCE and the formation of byproducts including HCl, $Cl_2$, CO, NO, $NO_2$ and $O_3$ were examined. At an identical input power, the increase in the reaction temperature from 373 K to 473 K decreased the decomposition of TCE in the plasma reactor. The presence of the catalyst downstream the plasma reactor not only enhanced the decomposition of TCE but also affected the distribution of byproducts, significantly. However, synergistic effect as a result of the combination of non-thermal plasma with catalyst was not observed, i.e., the TCE decomposition efficiency in this plasma-catalyst combination system was almost similar to the sum of those obtained with each process.

  • PDF