• 제목/요약/키워드: Cat Behavior Monitoring

검색결과 2건 처리시간 0.013초

딥러닝 기반의 반려묘 모니터링 및 질병 진단 시스템 (Cat Monitoring and Disease Diagnosis System based on Deep Learning)

  • 최윤아;채희찬;이종욱;박대희;정용화
    • 한국멀티미디어학회논문지
    • /
    • 제24권2호
    • /
    • pp.233-244
    • /
    • 2021
  • Recently, several ICT-based cat studies have produced some successful results, according to academic and industry sources. However, research on the level of simply identifying the cat's condition, such as the behavior and sound classification of cats based on images and sound signals, has yet to be found. In this paper, based on the veterinary scientific knowledge of cats, a practical and academic cat monitoring and disease diagnosis system is proposed to monitor the health status of the cat 24 hours a day by automatically categorizing and analyzing the behavior of the cat with location information using LSTM with a beacon sensor and a raspberry pie that can be built at low cost. Validity of the proposed system is verified through experimentation with cats in actual custody (the accuracy of the cat behavior classification and location identification was 96.3% and 92.7% on average, respectively). Furthermore, a rule-based disease analysis system based on the veterinary knowledge was designed and implemented so that owners can check whether or not the cats have diseases at home (or can be used as an auxiliary tool for diagnosis by a pet veterinarian).

반려묘의 상황인지형 행동 캡셔닝 시스템 (Context-Awareness Cat Behavior Captioning System)

  • 채희찬;최윤아;이종욱;박대희;정용화
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.21-29
    • /
    • 2021
  • With the recent increase in the number of households raising pets, various engineering studies have been underway for pets. The final purpose of this study is to automatically generate situation-sensitive captions that can express implicit intentions based on the behavior and sound of cats by embedding the already mature behavioral detection technology of pets as basic element technology in the video capturing research. As a pilot project to this end, this paper proposes a high-level capturing system using optical-flow, RGB, and sound information of cat videos. That is, the proposed system uses video datasets collected in an actual breeding environment to extract feature vectors from the video and sound, then through hierarchical LSTM encoder and decoder, to identify the cat's behavior and its implicit intentions, and to perform learning to create context-sensitive captions. The performance of the proposed system was verified experimentally by utilizing video data collected in the environment where actual cats are raised.