• Title/Summary/Keyword: Casting Speed

Search Result 215, Processing Time 0.027 seconds

The Study on the Formation Mechanism of Gas Pore During Lost Foam Casting of Al alloys (알루미늄 합금의 소실모형주조 중 기포 형성 기구에 관한 연구)

  • Shin, Seung-Ryoul;Han, Sang-Won;Lee, Kyong-Whoan;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.268-275
    • /
    • 2003
  • The mechanism of the hydrogen gas pore formation was investigated in Lost Foam Casting of Al-alloy by reduced pressure test and real casting. The hydrogen gas pick-up was affected by the formed gas during the decomposition of polystyrene in addition to the liquid product. It depended on pouring temperature and a proper temperature of metal front gave the minimum hydrogen pick-up. At a low pouring temperature, the hydrogen went into the melt mainly from entrapped liquid product of polystyrene but pores were formed from the gas as well as the liquid product at a high pouring temperature. The mold flask evacuation down to 710torr decreased the gas porosity down by around 0.4% vol%. The entrapped decomposition product of polystyrene in the melt was observed through the visualization of filling behavior of Al alloy-melt with the high speed camera.

Analysis of the Coupled Turbulent Flow and Macroscopic Solidification in Twin-Roll Continuous Casting Process (쌍롤식 연속주조공정에서의 난류유동 및 거시적응고 해석)

  • Kim, Deok-Su;Kim, U-Seung;Jo, Gi-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.285-295
    • /
    • 2001
  • The transport phenomena in a wedge-shaped pool of twin-roll continuous caster are affected by the various operating parameters such as the melt-feed pattern, roll-gap thickness, melt-superheat, and casting speed. A computer program has been developed for analyzing the two-dimensional, steady conservation equations for transport phenomena during twin-roll continuous casting process in order to estimate the turbulent melt-flow, temperature fields, and solidification in the wedge-shaped pool. The turbulent characteristics of the melt-flow were considered using a low-Reynolds-number K-$\xi$ turbulence model. Based on the computer program, the effects of the different melt-feed patterns, roll-gap thicknesses, and superheats of melt on the variations of the velocity and temperature distributions, and the mushy solidification were examined. The results show that the liquidus line is located considerably at the upstream region, and in the lower region appear the well-mixed melt-flow and most widely developed mushy zone. Besides, the variation of melt-flow due to varying melt-feed patterns, affects mainly the liquidus line, and scarcely has effects on the solidus line in the outlet region.

A Study on the Characteristics of Cast Bonding Aluminium Alloy and Fe-17wt%Cr Steel with Vacuum Die Casting (진공다이캐스트법에 의한 Al합금과 Fe-17wt%Cr 강의 주조접합 특성연구)

  • Kim, Yong-Hyun;Kim, Eok-Soo;Kim, Heung-Sik;Lee, Kwang-Hak
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.410-418
    • /
    • 1999
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Fe-17wt%Cr steel (stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemical etched to have optimum pit size (above 0.2 mm) and pit density (above 30%). The implementation of vacuum die casting by using surface treated stainless steel (Fe-17wt%Cr Steel) produces good trial products having acceptable cast-bonding ability. The enabling conditions for cast-bonding are pouring temperature $690^{\circ}C$, filling speed 30 m/sec and casting pressure $800\;kg/cm^2$. The microscopic observation of cast-bonded Al/Fe-17wt%Cr steel does not show any evidence of intermetallic compounds. The bonding strength of trial products is $150-400\;kg/cm^2$ and this is stronger than conventionally cladded metal having $30-70\;kg/cm^2$.

  • PDF

Analysis of the Molten Metal Direct Rolling for Magnesium Considering Thermal Flow Phenomena (열 유동 현상을 고려한 마그네슘 용탕 직접 압연공정 해석)

  • Bae J.W.;Kang C.G.;Kang S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.786-789
    • /
    • 2005
  • The proper parameters in a twin roll strip casting are important to obtain the stabilization of the Mg sheet. What is examined in this paper is the quantitative relationships of the important control parameters such as the roll speed, height of pool region, outlet size of nozzle, solidification profile and the final point of solidification in a twin roll strip casting Unsteady conservation equations were used for transport phenomena in the pool region of a twin roll strip casting in order to predict a velocity, temperature distributions of fields and a solidification process of molten magnesium. The energy equation of cooling roll Is solved simultaneously with the conservation equations of molten magnesium In order to consider the heat transfer through the cooling roil. The finite difference method (2-D) and the finite element method (2-D) are used in the analysis of pool region and cooling roil to reduce computing time and to improve the accuracy of calculation respectively.

  • PDF

A Study on the Effects of Flow Adaptive Gating System and Ceramic Filter on Flow Stability (흐름 적응 탕구계와 필터가 유동 안정성에 미치는 영향 연구)

  • Hwang, Ho-Young;Yin, Song;Nam, Cheol-Hee
    • Journal of Korea Foundry Society
    • /
    • v.37 no.3
    • /
    • pp.71-77
    • /
    • 2017
  • Casting defects produced during the casting process seriously affect the mechanical properties of the resulting products, reduce the performance capabilities of the product, and also result in economic losses. Therefore, this paper mainly investigates the causes of defects and methods by which to reduce these defects stemming from molten metal flows in a runner system of the type widely used in the sand mold casting process. The flow characteristics of a molten alloy are difficult to observe during the actual casting process. For this reason, a water model was used to observe the flow in the casting process, and the flow in each case was recorded using high-speed cameras as part of the experimental process of this study. Several repetitive experiments were performed to improve the accuracy of the experimental results. The traditional casting system was modified according to the design rules proposed by Campbell, and the system was termed flow-adaptive gating system with a water model. Comparing the flow characteristics of traditional and adaptive gating systems with a water model shows that the bubbles in the water in the latter case are reduced more significantly than in the former case. A ceramic filter system was adapted to the flow-adaptive gating system to minimize the instability of the flow during filling, which occurs as the fluid velocity in the runner increases. In additional, the flow behavior with and without the filter system were compared. The water model system in this work was shown to be able to verify that the adaptation of the filter system brings improvements by stabilizing the flow and reducing the amount of bubbles in the runner system. Moreover, using the flow-adaptive runner system with the filter system leads to considerably stable flows in the runner system.

A Study on Fabrication Conditions of Al-SiCp Composites by Squeeze Casting (Squeeze Casting에 의한 Al-SiCp 복합재료의 제조 조건에 관한 연구)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.471-479
    • /
    • 1994
  • Al-2%Si-2%Mg alloy containing SiC particle in 20, $70{\mu}m$ were prepared by mean of squeeze casting with various pressure 50, 100, 150 and 220MPa respectively. The specimens were made by casting into $50{\Phi}{\times}100{\ell}$ mold under various squeeze conditions(pressures, pressurizing temperature, particle sizes). Mechanical properties(hardness, tensile strength, elongation and wear characteristics) were evaluated at room temperature with those various fabrication factors. It became feasible to make favorable Al-SiCp composite free from casting defects by the injection of Ar gas during melting and 100MPa pressure squeeze casting. However, pressure of 50MPa was not sufficient to avoid completely porosity formation as a result of precessing and shrinkage during solidification. As the particle size is smaller and the squeeze pressure is higher, the hardness and tensile strength at room temperature are higher. Cell size became smaller gradually with increase of squeeze pressure. With increase of squeeze pressure(MPa), wear behaviors of those composites were changed from adhesive into abrasive wear, and the tendency of above behavior became outstanding with increasing sliding speed. The chemical reaction(4Al+3SiC${\rightarrow}$$Al_4C_3+3Si$) is more accelerated at interface between SiCp and matrix with increase of squeeze pressure. Therefore $Al_4C_3$ intercompound and Si peak intensity is increased at interface.

  • PDF

Quality Evaluations of Induction Motor Rotors during Die Casting Process (유도전동기 회전자 금형주조 시 품질평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.115-120
    • /
    • 2018
  • This study examined the cast quality of small-sized induction motor rotors during the die casting process. Numerical analyses with 3-dimensional half models were performed to investigate the filling patterns of aluminum molten metals into a mold after high-speed injections. The following were obtained from numerical analyses and experimental results. First, molten metals started to fill the lower end ring, then moved horizontally to fill the core slot and upper end ring, and finally stopped to fill the rotor core slot. Second, circulation of molten metals occurred at the lower end ring, resulting considerable porosity at the section of lower end ring from the experimental results. Third, further work for obtaining sound quality of rotor core cast is required to develop a new shape of the rotor core cast or improve the die casting conditions.

Acceleration of Terrain Rendering Using Bounding Box Subdivision (바운딩 박스 세분화를 통한 지형 렌더링의 가속화)

  • Lee, Eun-Seok;Lee, Jin-Hee;Jo, In-Woo;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.71-80
    • /
    • 2011
  • Recent terrain rendering applications such as 3D games and virtual reality, use GPU-based ray-casting method for rendering high-quality scenes in realtime. As the size of terrain dataset grows bigger, the rendering speed will be decreased by the increase of the number of texture samplings. To accelerate the conventional ray-casting, we propose an efficient ray casting method with subdivided bounding boxes which are based-on GPU quadtree traversal. The subdivision of the terrain's bounding box can reduce the empty spaces effectively. By performing the ray-casting with this compact bounding box, we can efficiently reduce computation with empty space skipping. Unlike the recent quadtree-based empty space skipping techniques which perform the tree traversal at each ray, our method traverses the tree only once per frame. Therefore, we can save much computational time.

A Study on the Case of 'Plaster Mold Casting' using 3D Printer - Focused on Ceramic Craft for Use (3D 프린터를 이용한 '석고 몰드 캐스팅' 사례에 관한 연구 - 실용도자공예를 중심으로)

  • Bang, Chang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.141-149
    • /
    • 2021
  • 3D printers, which emerged in the late 20th century, have become a key part of the fourth industrial revolution in the 21st century. Although 3D printers, the key equipment of the maker movement and the starting point of the new cottage industry in the 21st century, still reveal the limitations of mass production with low output speed and limited filament materials, the use of 3D printers by ceramic craftsmen has recently increased exponentially. However, as part of a way to overcome the discord between craftsmanship and the new technology, which has been repeated over and over in the past in craft history, the study focused on the 'plaster mold casting' technique using 3D printers. Therefore, after analyzing casting techniques of Tony Hansen, Webe van Gansbeck, Jade Crompton, and Ryu Hee-do, the potters who actively developed gypsum techniques in the world's ceramic crafts field and applied them to their own designs, I tried to find the point of convergence between 3D printers and ceramic crafts by presenting examples of effective 3D modeling methods and optimal slip casting methods using 3D printers.