• Title/Summary/Keyword: Casting Mold

Search Result 465, Processing Time 0.024 seconds

Beryllium Effects on the Morphology of Iron Intermetallics in the A356 Aluminium Casting Alloy (주조용 A356합금에서 Fe계 금속간화합물의 형상에 미치는 Be의 영향)

  • Lee, Jeong-Keun;Park, Chong-Sung;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.18 no.4
    • /
    • pp.357-363
    • /
    • 1998
  • Microstructure of A356 aluminium alloys cast in a permanent mold was investigated by optical microscope and image analyzer, with particular respect to the shape and size distribution of iron intermetallics known as ${\beta}-phase$ ($Al_5FeSi$). Morphologies of the ${\beta}-phase$ was found to change gradually with the Be:Fe ratio like these. In Be-free alloys, ${\beta}-phase$ with needlelike morphology was well developed, but script phase was appeared when the Be:Fe ratio is above 0.2:1. With the Be:Fe ratios of 0.4:1-1:1, script phase as well as Be-rich phase was also observed. In case of higher Be addition, above 1:1, Be-rich phase was observed on all regions of the specimens, and increasing of the Be:Fe ratios gradually make the Be-rich phase coarse. It was also observed that the ${\beta}-phase$ with needlelike morphology was coarsened with increase of the Fe content in Be-free alloys. However, in Be-added alloys, length and number of these ${\beta}-phases$ were considerably decreased with the increased Be:Fe ratio. It was concluded that Fe impurity element to be crystallized into needlelike intermetallics was tied up by Be addition element, and new phases were crystallized into script or Be-rich intermetallics.

  • PDF

Effects of Mo on the Microstructure and Hardness in High Chromium Cast Irons (Mo가 고크롬주철의 조직 및 경도에 미치는 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 1996
  • In high chromium cast iron, the control of matrix microstructure as well as carbide structure is important to the performance as a wear resistant material. In this study, 3.0% C-24.0% Cr white cast irons with various molybdenum contents(residual, 1.0%, 3.0% and 5.0%) were solidified conventionally and unidirectionally for studying their effects on the microstructure and hardness. In the conventional casting, two sets of castings were poured from each melt. One set of the castings consisted of cylindrical bars of 10 and 20mm by 155mm long. The second set of the castings was a cylindrical bar of 30mm by 200mm long. On the other hand, a pep-set mold set on the Cu plate was employed to make the solidification unidirectionally. X-ray diffraction method was used to observe retained austenite and carbides in the high chromium cast iron. The morphology of eutectic $M_7C_3$ carbides changed from needle-like type to nodular type with the increase of Mo content. And, the presence of $M_2C$ carbides was identified in the sample where Mo was added over 3.0 %. Primary and eutectic carbides appeared as rod type and corngrain type, respectively in the unidirectionally solidified samples which were cut to parallel to the solidification direction. In the EDX analysis, Cr concentration was higher in the primary and eutectic $M_7C_3$ carbides, Mo in the $M_2C$ carbides, and Fe in the matrix.

  • PDF

A Study on Development of Safety Shell Molds for Precision Machining of Sand Mold Casting Product (사형제품 기계가공을 위한 안전금형 개발에 관한 연구)

  • Choe, Jae-Hun;Nam, Seung-Don
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.587-595
    • /
    • 2013
  • 기계가공으로 인한 사고는 작업자에게 치명적인 경우가 많다. 이러한 사고는 완벽한 가공지그을 통해 대부분 예방이 가능하지만 제품설계초기 후가공과 양산 공정은 고려되지 않고 설계되어 기계가공 시 재해로 연결되는 경우가 빈번히 발생하고 있다. 사형주조법은 수작업으로 손쉽게 제품을 생산하는 장점을 가지는 반면 치수오차가 다른 양산공정 보다 크다는 단점을 가진다. 이런 사형 주조품을 기계 가공할 때 제품의 치수편차로 인해 불안전한 고정및 과다한 절삭, 제품이탈, 공구파손, 장비와 공구의 빠른 수명감소 등의 다양한 문제가 발생 하지만 사형주조의 특성상 개선하기 어려운 문제로 인식되고 있다. 본 연구에서는 원형의 용기형태의 제품을 사형주조 후 기계가공 하는 것을 금형으로 대체하기 위한 셸몰드법을 제시하고 셸몰드로 만든 셸주형으로 주조함으로서 표면조도 평균 $Ra9.94{\mu}m$의 기계가공에 준하는 표면을 구현하였다. 외형의 정밀한 제품을 대량 생산하여 가공공정의 간소화 및 평균 두께 편차를 줄임으로서 제품파손 및 제작 시 발생할 수 있는 안전사고예방에 긍정적인 영향을 주었다. 기계가공전 제품의 치수정밀도를 높여 안전성, 생산성향상, 가공 공정단축, 환경개선 등을 이 가능함을 확인하였다.

  • PDF

Microstructural and Mechanical Characteristics of A356 Alloy Cast by Semi-Solid Squeeze Process (반응고 공정 가압 주조한 A356합금의 미세조직 및 기계적 특성)

  • Kim, Sug-Won;Kang, Yeun-Cheul;Kim, Dong-Kun;Kumai, Sinji
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2000
  • So far, the study on semi-solid process has been carried out to develop and research new advanced materials without some casting defects. In this study, A356 billets consisted of various dendritic shapes were prepared using electro-magnetic stirring process continuously. As-cast respectively has liquidus temperature of $625.6^{\circ}C$ and solidus temperature of $573.55^{\circ}C$ A356 slugs were reheated homogeneously at different temperatures of 580, 590 and $605^{\circ}C$, followed by squeezing in a mold insulated with applied pressures(0, 25, 50 and 70 MPa). In order to investigate on aging responce for casts, 50 MPa squeezed specimen among all specimens was prepared in aging treatments, which conditions are aging temperature of $160^{\circ}C$ and holding times of 0, 45, 90, 270, 360, 720, 1440 and 2880 min after solution treatment ($540^{\circ}C$ for 10 hr). SSM ingot with the output velocity of 150mm/min appeared more spheroidal shape and fine structure than that with the output velocity of 250 mm/min. According to increasing in reheating temperature, numbers of fatigue cycles, U.T.S and elongation increased at same time.

  • PDF

Sintering of Ni-Based Amorphous Alloy Powders by Plasma Activated Sintering Process (PAS법을 이용한 Ni기 비정질 분말의 소결)

  • Koo, Ja-Min;Shin, Kee-Sam;Kim, Yoon-Bae;Bae, Jong-Soo;Hur, Sung-Kang
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.765-772
    • /
    • 2005
  • PAS(Plasma Activated Sintering) process was tried to apply for the fabrication of BMG(Bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5}\;and\;Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ from the as-atomized amorphous powder. Compressive strength for the BMG(bulk Metallic Glasses) of $Ni_{57}Zr_{20}Ti_{18}Si_5$ were lower than those of BMG rods produced by warm extrusion ,or copper mold casting method. Microstructural examination by optical microcope, SEM ana EDS showed that oxidation had occurred during PASintering. In order to prevent the powder from the oxidation during PASintering, Ni coating for $Ni_{57}Zr_{20}Ti_{18}Si_5$ amorphous powder by electroless-plating method was performed. Microstructural examination for Ni coated layers after PASintering indicated that the Ni coating had been so effective to prevent powder from oxidation during PASintering. Sintering behaviors of $Ni_{57}Zr_{20}Ti_{18}Si_3Sn_2$ represent the same as those of $Ni_{57}Zr_{20}Ti_{18}Si_5$.

Effects of Processing and Designing Variables on Formation of Shrinkage Cavities in GC150 Gray Cast Iron (GC150 회주철의 수축결함생성에 미치는 주조 및 설계공정인자들의 영향)

  • Yu, Sung-Kon;Shin, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.580-586
    • /
    • 2002
  • The effect of processing and designing variables such as pouring temperature(1400 or $1500^{\circ}C$), inoculation and risering design(T and H type) on the formation of defects such as external depression, primary and secondary shrinkage cavities in GC150 gray cast iron was investigated. In T type risering design, external depression or primary shrinkage cavity due to liquid contraction was formed in all of the eight cases. Regardless of its modulus value, the riser could not function properly in T type risering design because directional solidification was not promoted toward the riser. On the other hand, the four cases of H type risering design in which thermal sleeves were set onto the risers produced defect-free castings. In both types of the risering designs, secondary shrinkage cavity caused by solidification contraction was not observed in the casting because of the expansion pressure due to graphite precipitation and the application of rigid pep-set mold. The degree of external depression or primary shrinkage cavity was reduced with lowered pouring temperature. The effect of inoculation was diminished because of the high carbon equivalent of GC 150 gray cast iron.

Application of a Dynamic-Nanoindentation Method to Analyze the Local Structure of an Fe-18 at.% Gd Cast Alloy

  • Choi, Yong;Baik, Youl;Moon, Byung M.;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.576-580
    • /
    • 2017
  • A dynamic nanoindentation method was applied to study an Fe-18 at.% Gd alloy as a neutron-absorbing material prepared by vacuum arc-melting and cast in a mold. The Fe-18 at.% Gd cast alloy had a microstructure with matrix phases and an Fe-rich primary dendrite of $Fe_9Gd$. Rietveld refinement of the X-ray spectra showed that the Fe-18 at.% Gd cast alloy consisted of 35.84 at.% $Fe_3Gd$, 6.58 at.% $Fe_5Gd$, 16.22 at.% $Fe_9Gd$, 1.87 at.% $Fe_2Gd$, and 39.49 at.% ${\beta}-Fe_{17}Gd_2$. The average nanohardness of the primary dendrite phase and the matrix phases were 8.7 GPa and 9.3 GPa, respectively. The fatigue limit of the matrix phase was approximately 37% higher than that of the primary dendrite phase. The dynamic nanoindentation method is useful for identifying local phases and for analyzing local mechanical properties.

Investigation of Factors for Smartization of Ppuri Enterprises Based on the Smart Factory Status (뿌리기업 스마트공장 구축 현황과 영향관계 분석)

  • Kim, Bo Kyung;Lee, Sang Mok;Kim, Tae Bum;Kim, Taek Soo;Kim, Chang Kyung
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.166-175
    • /
    • 2022
  • Ppuri or Root technology primarily includes technologies such as casting, mold, plastic working, welding, heat treatment and surface treatment. It is regarded as an essential element for improving the competitiveness of the quality of final products. This study investigates the current status of smart factory implementation for Ppuri companies and analyzes the influencing relationships among various company factors. The factors affecting smart factory implementation for Ppuri companies are sales, exports, number of technical employees, and holding corporate research institutes. In addition, this research shows that even if smart factory implementation is pursued for data collection, data utilization is not implemented properly. Thus, it is suggested that the implementation of smart factories requires not only the availability of facilities and systems but also proper data utilization.

Development of capsule fabrication process that can control selective fracture location based on PDMS mold (PDMS 몰드 기반의 선택적 파단 위치 제어가 가능한 캡슐 제작 공정 개발)

  • Lim, Tae-Uk;Cheng, Hao;Wang, Shu-Le;Hu, Jie;Jung, Won-Suk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.245-246
    • /
    • 2022
  • Recently, research on the self-healing of concrete using bacteria has been actively conducted. The self-healing method using bacteria has a low self-healing rate and the surrounding environment of the fracture site is very important. A previous study to solve this problem involves the manufacture of capsules using 3D printing. Fracture position control was an important topic in 3D printing-based capsules. In this study, to compensate for the shortcomings of existing studies, a capsule capable of selective destruction location control was produced using PDMS-based molds that are not restricted by the environment. Resin capsules were prepared for each part using several molds and a bonding surface was arranged. In order to verify this on the bonding surface, fracture strength and wave unit values were analyzed through a three-way compression experiment. It can be seen that as the curing time increases, the deviation between samples decreases. In addition, through experiments, it was confirmed that the junction surface and wave unit values coincide in all three directions. It can be used for self-healing research using various solutions.

  • PDF

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.