• 제목/요약/키워드: Casting Defects

검색결과 189건 처리시간 0.027초

알루미늄 사형주조에서 기공 결함 감소를 위한 연구 (A study on the reduction of blow hole defects in aluminum sand casting)

  • 이동연;이춘규
    • Design & Manufacturing
    • /
    • 제14권4호
    • /
    • pp.52-57
    • /
    • 2020
  • In this study attempted to prevent defects due to blow holes among defects of sand casting products. It was intended to reduce the defect rate by reducing the blow hole of the inner surface. Currently, expectations and requirements for the quality level of non-ferrous aluminum casting in the casting industry are increasing. In addition, the shape is complex and the shrinkage precision is required. Among them, the test prototype is expensive to manufacture the mold, and the production time is also long, and the product is manufactured by sand casting. At this time, the highest defect rates are defects caused by shrinkage defects, surface defects, and blow holes.. At this study, the manufacturing time was shortened by using the shape of the fluid movement path in advance. Also, it is possible to reduce defects due to blow holes.

공기 압축기의 피스톤용 알루미늄 합금 소재 개발 (Development of Aluminium Alloy for Piston of Air Compressor)

  • 김순경;김문경
    • 한국기계가공학회지
    • /
    • 제7권1호
    • /
    • pp.9-16
    • /
    • 2008
  • It is important not only to reduce the casting defects of piston but also to improvement in the mechanical properties(hardness) of piston for the air compressor. The blow hole is typical casting defects in the conventional cast of aluminium alloy(AC8A-T6) piston. Because of the heat treatment method, mechanical properties of the aluminium alloy for piston was decided on the heat treatment method and cycle. Therefore, we tested on the development of mechanical properties and on the casting defects of piston for the air compressor in accordance with the heat treatment and casting condition. After the heat treatment and casting was carried out as several times, and was compared with the imported piston. As a result of several investigations; microstructure, hardness and casting defects of piston was changed under the influence of the heat treatment and casting method. When the cooling rate was controlled and the uni-cast method used, it bas the same mechanical properties and microstructure.

  • PDF

경동식 중력주조법에 의한 주조결함 제어 (Control of the Casting Defects in the Gravity Tilt Pour Casting Process)

  • 염기동;홍준표
    • 한국주조공학회지
    • /
    • 제18권3호
    • /
    • pp.262-270
    • /
    • 1998
  • Gravity tilt pour casting can effectively guarantee the reduction of various casting defects by controlling the rotation speed and the tilting angle of the mold during tilt pouring. The relationship between casting process parameters and the soundness of castings has been investigated in order to determine the optimum process variables in the gravity tilt pour casting process. In order to evaluate the effect of rotation speed on mold filling patterns, a video camera was employed to visualize the in-situ fluid flow behavior of the molten metal, and the relevant fluid velocity was also estimated. X-ray and mechanical tests were also performed to evaluate the effect of fluid velocity on casting quality. With the rotation speed lower than 0.5 r.p.m., which is nearly corresponding to the critical velocity of stability in the fluid flow, sound castings were obtained without having any casting defects. It can be concluded that the gravity tilt pour casting process is an effective process for manufacturing sound casting products with enhanced physical and mechanical properties.

  • PDF

내부 결함을 고려한 주조 제품의 피로수명 예측을 위한 결함 형상단순화 해석모델 (Shape-Simplification Analysis Model for Fatigue Life Prediction of Casting Products Considering Internal Defects)

  • 곽시영;김학구
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1243-1248
    • /
    • 2011
  • 내부결함은 주조제품의 강도 및 피로 수명에 있어 상당한 영향을 미치기 때문에 주조공정에서 주요 관심사 이다. 일반적으로 내부결함은 응력집중을 발생시키며 균열의 시작점이 되므로 피로 수명과 같은 기계적 거동에 있어 수축공과 같은 결함을 이해하는 것이 중요하다. 본 논문에서는 내부결함을 고려한 인장시편에 대해 피로시험을 수행하고 주조결함을 고려할 때의 특정하중피로노치 계수를 산정하였다. 실제 내부결함은 산업용 CT 장비를 통해서 확인하였으며 확인된 결함은 형상단순화법에 의해 타원체로 단순화 하고 응력해석과 피로해석을 수행하였다. 그 결과 우리가 제안한 방법이 기계적 거동에 있어 내부결함의 영향을 조사하고 피로수명 등을 예측함에 있어 유용함을 확인할 수 있었다.

치과용 주조합금의 주조방법에 따른 부식거동 (Corrosion Behavior of Dental Alloys Cast by Various Casting Methods)

  • 최한철;고영무
    • 한국표면공학회지
    • /
    • 제37권5호
    • /
    • pp.296-300
    • /
    • 2004
  • The defects of partial denture frameworks are mainly shrinkage porosity, inclusions, micro-crack, particles from investment, and dendritic structure. In order to investigate a good casting condition of partial denture frameworks, the three casting alloys and casting methods were used and detected casting defects were analyzed by using electrochemical methods. Three casting alloys (63Co-27Cr-5.5Mo, 63Ni-16Cr, 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting (Kerr, USA), high frequency induction casting (Jelenko Eagle, USA), vacuum pressure casting (Bego, Germany). The casting temperature was $1,380^{\circ}C$ (63Co-27Cr-5.5Mo and 63Ni-16Cr) and $1,420^{\circ}C$ (63Co-30Cr-5Mo). The casting morphologies were analyzed using FE-SEM and EDX. The corrosion test of the dendritic structure was performed through potentiodynamic method in 0.9% NaCl solutions at $36.5^{\circ}C$ and corrosion surface was observed using SEM. The defects of partial denture frameworks improved in the order of centrifugal casting, high frequency induction casting, and vacuum pressure casting method, especially, pore defects were found at part of clasp in the case of centrifugal casting method. The structure of casting showed dendritic structure for three casting alloys. In the 63Co-27Cr-5.5Mo and 63Co-30Cr-5Mo, $\alpha$-Co and $\varepsilon$-Co phases were identified at matrix and $${\gamma}$-Ni_2$Cr second phase were shown in 63Ni-16Cr. Also, the corrosion resistance of cast structure increased in the order of vacuum pressure casting, high frequency induction casting, and centrifugal casting method.

고압 다이캐스팅 공정에서 제품 결함을 사전 예측하기 위한 기계 학습 기반의 공정관리 방안 연구 (Study on the Process Management for Casting Defects Detection in High Pressure Die Casting based on Machine Learning Algorithm)

  • 이승로;이승철;한도석;김낙수
    • 한국주조공학회지
    • /
    • 제41권6호
    • /
    • pp.521-527
    • /
    • 2021
  • 본 연구는 고압 다이캐스팅 공정에서 제품 결함을 사전에 예측하기 위한 기계 학습 기반의 공정 관리 모델 개발에 관한 연구이다. 모델은 이전 사이클에서의 온도를 입력받고, 사이클에 걸쳐서 나타나는 특징을 인식하여 다음 사이클의 결함 발생 여부를 예측한다. 기어 박스 형상에 대하여 제안된 알고리즘을 적용하여, 3 사이클의 정보를 통해서 98 .9%의 정확도와 96.8 %의 재현율로 제품 수축 결함을 사전에 예측하였다.

반용융 성형공정의 응용 및 문제점 (Applications of Semi-Solid Forming and its Problems)

  • 강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 고액공존금속의 성형기술 심포지엄
    • /
    • pp.135-147
    • /
    • 1997
  • The production of light metal parts using aluminum is mainly performed by die casting and squeeze casting, which directly fabricate the required shape from the liquid state. However, die casting is subject to defects such as shrinkage porosity and air trapped when molten metal enters the cavity, whilst squeeze casting also has defects due to turbulent flow in the die cavity. Both diecasting and sqeeze casting have inhomogeneous mechanical property in terms of dendritic structure during solidification. Active research has been carried out on semi-solid processing, rather than on conventional process methods such as die casting, which involve various problems. Therefore in this paper, to introduce the fundamental technology for d e design, in die casting and forging process with semi-solid materials, relationship between stress and strain of semi-solid materials, and for producing parts die design has been proposed as parameters of globulization of the microstructure and gate shape. The prevention of various defects to produce sound parts are also introduced.

  • PDF

주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구 (A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment)

  • 박철순;김흥섭
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.

중자에서 발생한 가스 결함 위치 예측 (Prediction of Positions of Gas Defects Generated from Core)

  • 마쓰시타 마코토;코사카 아키라;카나타니 시게히로
    • 한국주조공학회지
    • /
    • 제42권1호
    • /
    • pp.61-66
    • /
    • 2022
  • Hydraulic units are important components of agricultural and construction machinery, and thus require high-quality castings. However, gas defects occurring inside the sand cores of the castings due to the resin used is a problem. This study therefore aimed to develop a casting simulation method that can clarify the gas defect positions. Gas defects are thought to be caused by gas generated after the molten metal fills up the mold cavity. The gas constant is the most effective factor for simulating this gas generated from sand cores. It is calculated by gas generating temperature and analysis of composition in the inert gas atmosphere modified according to the mold filling conditions of molten metal. It is assumed that gases generated from the inside of castings remain if the following formula is established. [Time of occurrence of gas generation] + [Time of occurrence of gas floating] > [Time of occurrence of casting surface solidification] The possibility of gas defects is evaluated by the time of occurrence of gas generation and gas floating calculated using the gas constant. The residual position of generated gases is decided by the closed loops indicating the final solidification location in the casting simulation. The above procedure enables us to suggest suitable casting designs with zero gas defects, without the need to repeat casting tests.

용탕청정기능을 부여한 고품질 다이캐스팅 기술의 개발 (Development of High Quality Die Casting Technology with Function to Purify Molten Metal)

  • 파다야지지;고목박기;도원삼차
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.3-9
    • /
    • 2004
  • Die casting is "a process in which molten metal is injected at high velocity and pressure into a mold(die) cavity". Casting with smooth surfaces, high dimensional precision, complicated shapes, and reduced weight can be obtained using this process. But this process is susceptible to casting defects such as porosities, scattered chilled layers, hard spots, etc. For preventing casting defects, we developed "low-velocity high pressure die casting technology", "squeeze die casting technology", "heat insulating sleeve lubricant technology", and "direct pouring technology". The "direct pouring technology" is useful for producing molten metal without oxide contamination. It consists of a pumping system which supplies pure molten metal to the die casting machine. By using this technology, we have successfully reduced oxide contamination in castings to 1/20 of that of our previous castings.