• Title/Summary/Keyword: Casting Defects

Search Result 189, Processing Time 0.028 seconds

Manufacturing of Product by Semi-Solid Forging (반용융 단조품의 제조)

  • Park, Hyung-Jin;Kang, Chung-Gil;Kim, Byung-Min;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.45-51
    • /
    • 1999
  • The semi-solid forging is a new forging technology in which the billet is heated to the semi-solid state coexisting liquid and solid phase for making globular microstructure and subsequently formed. As the semi-solid forging is compared with conventional casting such as die casting and squeeze casting for the characteristics of its process, the product without inner defects such as gas porosity and segregation can be obtained and its microstructure is globular grain. Simutaneously, its mechanical properties are improved by globular microstructure and the lower temperature of the slug causes the cycle time of manufacturing to be shortened and the die life to be lengthened. As it is compared with conventional cold and hot forging, it is possible to minimize the equipment of production owing to a lower forming load and reduce the number of process by a followed treatment for complex shaped product. Therefore it is needed to confirm the quality of a semi-solid forged product by defining its characteristics quantitatively under these advantages. This paper investigates the formability of a master cylinder by its forming variables. And the microstructural characteristics and mechanical property of it is also studied.

  • PDF

A Study on the Superplastic Characteristics of Sn-38%Pb Eutectic Alloy Produced by Continuous Casting Process (연속주조법에 의한 Sn-38%Pb 공정합금의 초소성특성)

  • Song, Tae-Seok;Jo, Hyung-Ho;Choi, Jae-Ha;Ji, Tae-Gu;Kim, Myung-Han
    • Journal of Korea Foundry Society
    • /
    • v.17 no.3
    • /
    • pp.252-257
    • /
    • 1997
  • The 8 mm dia: Sn-38%Pb eutectic alloy rods were produced by use of the horizontal continuous casting process with the heated mold and chill cast process. The cast rods were rolled into 2.0${\sim}$0.5 mm thick plates and structural and mechanical properties were examined. The results revealed that the plates produced by the continuous casting process with the heated mold show much higher superplasticity at ambient temperature (1550% elongation at 0.5mm thick plate and 0.5mm/min strain rate) than the plates procuced by chill cast process (630% elongation). Such a high superplasticity of the continuous cast plates is due to the high-quality plates free from any inside and surface defects with fine and uniform distribution of eutectic phases.

  • PDF

The Weldability of the Dissimilar Magnesium Alloy Welded by Fiber Laser (파이버 레이저를 이용한 이종 마그네슘 합금의 용접성에 관한 연구)

  • Kim, Jong-Do;Kim, Young-Sik;Song, Mook-Keun;Lee, Jung-Han
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Magnesium alloys have gained increased attention in recent years as the structural materials, because of their attractive properties such as good specific strength, excellent sound damping capability. However, to expand their applications, a reliable joining process is absolutely necessary. In this study, a CW fiber laser was used to investigate the lap weldability of sand casting and wrought magnesium alloys. The effect of defocused distance on lap weldability was examined, and it was found that spatters always generated at the around focused distance because of the high power density of the laser beam. Thus, defocused distance was required to obtain sound welds. In addition, the application of fillet welding was evaluated for minimizing the affect of sand casting magnesium alloy that have relatively poor weldability. As a result of this study, we could confirm good weldability without weld defects.

On Shrinkage Cavities Shape Modeling for Fatigue Simulation of A356 Alloy Specimen (A356 합금 시편의 수축공 결함형상에 대한 피로해석용 형상 모델링 방법)

  • Kwak, Si-Young;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • During the casting process, it is possible to minimize shrinkage and blowholes by modifying the casting design. However, it is impossible to eliminate these factors completely. Therefore, mechanical design engineers apply a sufficient safety factor owing to the possibility of insufficient performances of the cast products. In this paper, prediction method of the fatigue life of cast products containing shrinkage is conducted by using CT (computed tomography) and the SSM (shape simplification method), and additional fatigue analyses are carried out. The analysis results are then compared to results from actual experiments on samples with shrinkage defects. It is found to be that the considering actual shrinkage in cast products by means of stress and fatigue analyses is more accurate and effective. It is also considered that the proposed hot spot method provides us a good tool to predict the fatigue lifes of cast product.

Numerical and Experimental Study of Semi-solid A356 Aluminum Alloy in Rheo-Forging process

  • Kim, H.H.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • Die casting process has been used widely for complex automotive products such as the knuckle, arm and etc. Generally, a part fabricated by casting has limited strength due to manufacturing defects by origin such as the dendrite structure and segregation. As an attempt to offer a solution to these problems, forging has been used as an alternative process. However, the forging process provides limited formability for complex shape products. Rheo-forging of metal offers not only superior mechanical strength but also requires significantly lower machine loads than solid forming processes. This paper presents the results of an A356 aluminum alloy sample, which were obtained by experiment and by simulation using DEFORM 3D. Samples of metal parts were subsequently fabricated by using hydraulic press machinery.

  • PDF

The Effect of the Gate Shape on the Controlled Material the Microstructure of Grain Size (게이트 형상이 결정입 제어 소재의 미세조직에 미치는 영향)

  • Jung Y. S.;Bae J. W.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.152-155
    • /
    • 2004
  • In the semi-solid die casting process, the important thing is the flow behaviors of semi-solid material. The flow patterns of semi-solid material can make the defects during die filling. To control of the flow patterns, is very important and difficult. In this paper, the flow behaviors of the semi-solid A356 alloy material during die filling at various die gate shapes has been observed with the grain size controlled material. The effects of the gate shape on the die filling characteristics were investigated. The filling tests in each plunger strokes were experimented, also simulated on the semi-solid material die casting process by MAGMAsofi. According to the filling tests and computer simulation, the effect of the gate shape on liquid segregation had been investigated.

  • PDF

Fabrication of Plasma Electrolytic Oxidation Coatings on Magnesium AZ91D Casting Alloys

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.432-438
    • /
    • 2017
  • AZ91D casting alloy requires an advanced plasma anodizing processing because large amount of defects are liable to generate during anodization. In this study, plasma electrolytic oxidation (PEO) of AZ91D Mg alloy was conducted by the application of either constant voltage or current using a pulse mode and its effects on pore formation, surface roughness and corrosion resistance were investigated. The PEO films showed a three-layer structure. The PEO film thickness was found to increase linearly with voltage. The surface roughness, Ra, ranged between $0.2{\mu}m$ and $0.3{\mu}m$. The corrosion resistance increased from RN 3.5 to 9.5 by the PEO treatment when evaluated according to the 72 hour salt spray test. The PEO-treated surface exhibited higher pitting potential than the raw material.

Algorithm Improvement Through AI-Based Casting Process Parameter Optimization (AI 기반의 주조 공정 파라미터 최적화를 통한 알고리즘 개선)

  • Hyun Sim;Seo-Young Choi;Hyun-Wook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.441-448
    • /
    • 2023
  • The quality of the casting process generates the largest source of defects in the manufacturing process, so its management is a key factor in productivity and quality evaluation. Based on the results of factor analysis, correlation analysis, and regression analysis with process data, this study aims to optimize the machine learning model to reduce the defect rate and verify the data suitability for smart factories.

A Study on the Effect of Stress Concentration Factor Determined by 3D-ESPI System on the Fatigue Life (3D-ESPI 시스템을 이용하여 결정된 응력집중계수가 피로수명에 미치는 영향에 관한 연구)

  • 김경수;심천식
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2002
  • Fatigue life estimation by the theoretical stress concentration factors are, in general, considerably different from test results. And in calculating stress concentration factor, it is very difficult to consider actual geometry and material property which are the notch shapes, imperfections or defects of materials such as porosities inclusions and casting defects, etc. Therefore, the paper deals with the experimental method to find out the more exact stress concentration factors by measuring the strain distributions on each specimen by 3D-ESPI(Electronic Speckle Pattern Interferometry) System. Then the fatigue lives are compared between theoretical calculations using stress concentration factors determined by 3D-ESPI system and fatigue test results.

In-situ X-Ray Observation of Shrinkage Defect of the Aluminum Alloy Castings (X-ray 실시간 관찰에 의한 알루미늄 합금의 응고 결함 관찰)

  • Cho, In-Sung;Kim, Jung-In;Lim, Chae-Ho
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.174-178
    • /
    • 2010
  • In the present study, in-situ real-time observation with an X-ray radioscopic facility was carried out on pure aluminum and aluminum alloy solidification. The three kinds of aluminum alloys, such as pure aluminum, Al-8.5%Si alloy, commercial A356 (AC4C) alloys, were used in the present study. The formations of the shrinkage defects in the castings were visualized and different formation phenomena for different aluminum alloys were investigated.