• Title/Summary/Keyword: Cast Steel

Search Result 496, Processing Time 0.031 seconds

Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode (용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

Creep Characteristics and Micro-structure for 10%CrMoVNbN Cast Steel Welded Joints (10%Cr Martensite계 내열주강 용접부의 Creep파단 특성 및 미세 조직)

  • 지병하;양병일;이경운;권희경
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.146-148
    • /
    • 2004
  • 최근 전세계적으로 활발히 진행되고있는 화력발전소용 내열강의 연구는 화력발전소의 열효율 향상을 위한 주증기 조건의 고온ㆍ고압화를 실현하기 위해 고온 크리프 파단강도 개선에 모든 연구력이 집중되고있다. (중략)

  • PDF

Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting (2상 스테인레스 주강의 공냉 열처리 적용 가능성)

  • Kim, Bong-Whan;Yang, Sik;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.

The Evaluation of Structural Stability of Corrugated Steel Plate Method applied in High-Speed Railway Vertical Tunnel Structures (고속철도 수직구 터널구조물에 적용된 파형강판공법의 구조적 안정성 검토)

  • Chung, Jee-Seung;Shin, Hwa-Cheol;Kim, Jin-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.64-69
    • /
    • 2016
  • In this paper, structural analysis of High-Speed railway vertical tunnel structures was performed to verify the structural stability. The corrugated steel plate method was applied to the vertical tunnel structures for its simple construction method and low cost. The structural stability of Wall, Connection and Storage section was performed with LRFD and ASD design method at joint part, buckling, stress and plastic hinge. From the results, all of vertical tunnel structures shown the structural stability regardless of design method and structure types. So, the application of corrugated steel plate in vertical tunnel structures instead of cast-in-placed concrete was quite enough.

Fatigue Crack Growth Behavior of Non-Magnetic Steel with Large Grain Size (조대결정 비자성강의 피로균열진전특성)

  • 남정학;최성대;이종형;정선환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.807-810
    • /
    • 2001
  • Fatigue crack growth tests were carried out using high manganese cast steel under constant amplitude loading. Crystal grain size of the material is about 1000$\mu\textrm{m}$. For this material, the fatigue crack growth mechanism of high manganese steel was clarified from results such as observation of crack growth path and fracture surface. $\Delta$$K_{th}$ is about 8MPa$\surd$m which is quiet large as compared to the general structural steels and the crack growth rate is lower than the general structural steels especilly in the low $\Delta$K regsion. The reason of this behavior is crack closure due to fracture surface roughness.

  • PDF