• Title/Summary/Keyword: Cast Mold Design

Search Result 40, Processing Time 0.017 seconds

The Optimum Design of Casting Process through Prediction and control of Thermal Deformation (주조 공정 시 열변형 예측과 제어를 통한 금형의 최적 설계에 관한 연구)

  • Choi, Bong-Hak;Kwahk, Si-Young;Kim, Jeong-Tae;Choi, Jeong-Kil;Lee, Dong-Il
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.209-215
    • /
    • 2005
  • The design of the Metal mold casting should consider several variables such as the material properties and shape of the mold. In particular, the thermal stress generated by the thermal expansion and contraction depending on the thermal gradient of the mold causes partial plastic deformation on the mold, which causes damage or fracture of the cast. Consequently, the thermal deformation along with thermal stress leads to thermal deformation of the cast itself. In this study, the temperature analysis of the cast and mold is simulated by FDM to control the thermal deformation and stress as a result of the thermal gradient of mold. Using the results from FDM simulation, the thermal deformation and stress are analyzed by FEM and, the optimal mold design with minimum thermal deformation of the cast is suggested.

Mechanical Properties & Fracture Toughness of Austempered Gray Cast Iron(AGI) by Permanent Mould Casting (금형주조한 오스템퍼 회주철의 기계적성질 및 파괴인성)

  • Yi, Young-Sang;Lee, Ha-Sung;Kang, Dong-Myeong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.3
    • /
    • pp.291-297
    • /
    • 1995
  • The mechanical properties and fracture toughness of permanent mold cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. The iron was melted to eutectic composition in order to get better castability especially in permanent mold casting. Specimens prepared for tensile, impact and fracture toughness test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$ and $370^{\circ}C$ for 1 hour. The strength, impact and fracture toughness of permanent mold cast AGI were found to be superior to those of sand cast AGI. The maximum value of 836 MPA in tensile strength, was obtained at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mold casting.

  • PDF

Effects of Runner Extension and Ingates on Mold Filling in Ring-type Cast Products (환형주조품의 용탕충진에 미치는 탕도연장부와 주입구 형상의 영향)

  • Park, Kyeong-Seob;Kang, Shin-Wook;Kim, Hee-Soo
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.29-35
    • /
    • 2015
  • In this study, potential defects of ring-type cast products during the mold-filling stage of the casting process were investigated using computer simulation. The main focus was on the effects of runner extension and ingates. During the mold filling the molten metal flowed from the bottom to the top of the mold in two curved paths along the ring-type cavity. The fluid fronts in the two paths did not show the identical velocity during the mold filling stage. This difference in the filling speeds may cause defects such as voids and local contractions. The present model contained virtual fluid detectors at various positions inside the mold. When the molten metal passed those points, the volume of fluid jumped up from zero to one. The moments were measured to compare the speeds of the fluid fronts. We attempted various combinations of runner extensions and ingates to stabilize the flow and then to optimize the casting mold design.

3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

  • Seno, Takashi;Ohtake, Yutaka;Kikuchi, Yuji;Saito, Noriaki;Suzuki, Hiromasa;Nagai, Yukie
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD) data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

Unidirectionally Solidified Cu Rod Fabrication Using Continuous Casting Apparatus with Cooled Mold (냉각주형식 연속주조장치에 의한 일방향응고 Cu 선재의 제조)

  • Cho, Hoon;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.29 no.5
    • /
    • pp.198-203
    • /
    • 2009
  • In order to manufacture copper ultra fine wire used for bonding wire in integrated circuit package, continuous casting process, which can produce high purity copper rod with small cross section, and wiredrawing process have to be optimized to prevent wire brakeage during entire manufacturing process of fine wire. The optimum condition for producing copper rod with mirror surface has to established by investigation of the effects of several parameters such as withdrawal speed, superheat and rod diameter on grain morphology of the cast rod and on its drawing characteristics to fine wire. The purpose of this study is to propose the optimized process parameters in continuous casting process in order to produce cast rod without internal defects, and to predict microstructure orientation suitable for wire drawing process.

Combined Heat Treatment Characteristics of Cast Iron for Mold Materials (금형재료용 주철강의 복합열처리 특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.364-370
    • /
    • 2011
  • Currently, there are two main issues regarding the development of core technologies in the automotive industry: the development of environmentally friendly vehicles and securing a high level of safety in the event of an accident. As part of the efforts to address these issues, research into alternative materials and new car body manufacturing and assembly technologies is necessary, and this has been carried out mainly by the automotive industries. Large press molds for producing car body parts are made of cast iron. With the increase of automobile production and various changes of design, the press forming process of car body parts has become more difficult. In the case of large press molds, high hardness and abrasive resistance are needed. To overcome these problems, we attempted to develop a combined heat treatment process consisting of local laser heat treatment followed by plasma nitriding, and evaluated the characteristics of the proposed heat treatment method. From the results of the experiments, it has been shown that the maximum surface hardness is 864 Hv by the laser heat treatment, 953 Hv by the plasma nitriding, and 1,094 Hv by the combined heat treatment. It is anticipated that the suggested combined heat treatment can be used to evaluate the durability of press mold.

Wear Characterisitics of TiN-coated Boron Cast Iron by Arc Evaporation Process (CAE 증착기술에 의해 TiN이 증착된 보론주철의 마모거동)

  • Song, Kun;Yoon, Eui-Sung;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.8 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • In order to gain better understanding of wear behaviors of TiN-coated boron cast iron, tests and analyses were conducted with block-on disc type tribometer. TiN layer of thickness $2 \mu m$ and $4 \mu m$, coated by cathodic arc evaporation process, were experimentally investigated with the variation of applied load and sliding speed under dry sliding condition. Wear characteristics were expressed in terms of the three-dimentional wear map as well as the wear rate vs sliding speed and load. Comparisons of wear and friction characteristics between coated cast irons and uncoated cast irns were also made. Wear mechanism of TiN layer was explained in view of surface interaction between the mating surfaces. The thicker coating exhibited higher hardness and adhesion strength. the significance of stresses at the surface and in the subsurface was briefly discussed in relation to the wear behavior.

Study on the Fabrication of a Large Steel Ingot with the Ultra Clean and Low Hot Top Ratio (저압탕 고청정 대형 잉고트 제조 연구)

  • Oh, S.H.;Lee, D.H.;Kim, N.S.;NamKung, J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.91-93
    • /
    • 2009
  • A large steel ingot needs to be larger and larger in size and an ultra high clean, no defect in quality with a low hot top ratio for the resent heavy industry. The demands are very difficult to achieve simultaneously because of their contradictive effect to each other in results. In this study, 30ton steel ingot was cast in a foundry with an optimized design parameter of cast mold and cast process conditions for the low hot top ratio, 12%. The cast ingot was analyzed in macro defect, segregations, and cleanness. No macro defect was founded in central surface of the ingot. The degree of segregation and cleanness are in the controlled range with a sound quality.

  • PDF

Effects of Processing and Designing Variables on Formation of Shrinkage Cavities in GC150 Gray Cast Iron (GC150 회주철의 수축결함생성에 미치는 주조 및 설계공정인자들의 영향)

  • Yu, Sung-Kon;Shin, Sang-Woo
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.580-586
    • /
    • 2002
  • The effect of processing and designing variables such as pouring temperature(1400 or $1500^{\circ}C$), inoculation and risering design(T and H type) on the formation of defects such as external depression, primary and secondary shrinkage cavities in GC150 gray cast iron was investigated. In T type risering design, external depression or primary shrinkage cavity due to liquid contraction was formed in all of the eight cases. Regardless of its modulus value, the riser could not function properly in T type risering design because directional solidification was not promoted toward the riser. On the other hand, the four cases of H type risering design in which thermal sleeves were set onto the risers produced defect-free castings. In both types of the risering designs, secondary shrinkage cavity caused by solidification contraction was not observed in the casting because of the expansion pressure due to graphite precipitation and the application of rigid pep-set mold. The degree of external depression or primary shrinkage cavity was reduced with lowered pouring temperature. The effect of inoculation was diminished because of the high carbon equivalent of GC 150 gray cast iron.