• Title/Summary/Keyword: Cast Aluminum

Search Result 204, Processing Time 0.029 seconds

Rapid Tooling of Porous Ceramic Mold Using Slip Casting (슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작)

  • Chung, Sung-Il;Jeong, Du-Su;Im, Yong-Gwan;Jeong, Hae-Do;Cho, Kyu-Kap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

A Study on the Surface Characterization of Fe-17wt.%Cr Steel for Cast-bonding of Al and Stainless Steel (Al과 스텐레스강의 주조접합을 위한 STS430(Fe-17wt.%Cr)강의 표면처리 특성연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.134-141
    • /
    • 2005
  • To overcome the undesirable deformation, peeling off and geometrical restrictions which were mainly caused by differences in thermal expansion coefficients during the cladding of aluminum strip and stainless strip, new processing method based on vacuum die casting is designed and implemented in fabricating Al/Fe-17wt%Cr steel(stainless steel). To increase cast-bonding ability, the surface of Fe-17wt%Cr steel is electrochemically etched to have optimum pit size and density. The optimum conditions to generate best pit are as follows: Solution: 1 M $Fecl_{3}$+1 M Nacl, Addition: $CuCl_{2}+HCl$, Current density: 80 $mA/cm^{2}$, Total current: 400 $coulomb/cm^{2}$, AC frequency :60 Hz.

Microstructural Changes and Mechanical Properties of 7175 Aluminum Alloy Die Forgings (7175 알루미늄합금 형단조재의 미세조직 변화와 기계적 성질)

  • Lee I. G;You J. S;Kang S. S;Lee O. Y
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.168-174
    • /
    • 2004
  • The aim of this study is to investigate the effect of process conditions on the microstructual changes and mechanical properties of large 7175 aluminum die forgings. The cast billets of 370 and 720 mm in diameter were homogenized and die forged after direct chill casting. The size and volume fraction of second phase particles in 720 mm billet were larger than those of 370 mm billet. The interdendritic sites containing the second phase particles was considered to be a crack initiation region in the process of cold upsetting. The tensile and yield strength of die forged specimens of 720 mm billet in the direction of Land L T were higher than those of 370 mm billet. However, the tensile strength of these specimens were 5 to 10% lower than that of American military specification. The plane strain fracture toughness of die forged specimens of 370 mm cast billet showed almost the same level of 720 mm billet, which was die forged after free forging.

Microstructure and Properties of Squeeze Cast AC8A MMC Reinforced with Ni-aluminide (용탕단조한 Ni-aluminide 보강 AC8A기 복합재료의 조직 및 특성)

  • Joo, Dae-Heon;Kim, Myung-Ho;Kwun, Suk-In;Kim, Jun-Su
    • Journal of Korea Foundry Society
    • /
    • v.17 no.2
    • /
    • pp.195-206
    • /
    • 1997
  • AC8A matrix composites reinforced with Ni-aluminide were fabricated by squeeze casting process, and the characteristics and nature of the growth of Ni-aluminide phases at the interface between nickel and aluminurn were investigated. In the as-cast composites, the reaction layer between Ni skeleton and aluminum matrix was found to be $NiAl_3$, regardless of the casting temperatures and the kinds of preforms. During high temperature solution treatment the $NiAl_3$ layer grew and formed new $Ni_2Al_3$ layer. Because of presence of the porosity formed by Kirkendall effect at the interface between $NiAl_3$ and aluminum matrix, the tensile strength of composites was inferior to that of AC8A matrix alloy. However, the composites exhibited superior wear resistance due to the formation Ni-aluminide intermetallic phases. Composite A, of which Ni skeleton was fully transformed into Ni-aluminide, shows better wear resistance than that of composite B which still possessed some unreacted Ni skeleton.

  • PDF

Effect of waste aluminium shavings on the bond characteristics of laterized concrete

  • Ofuyatan, Olatokunbo M.;Ivoke, Anthony A.;Olowofoyeku, Adeoye M.;Adesina, Adeyemi;Oluwafemi, John
    • Advances in materials Research
    • /
    • v.8 no.1
    • /
    • pp.25-36
    • /
    • 2019
  • The utilization of fibre in concrete production not only solves the problem of disposing this solid waste but helps conserve natural resources. This study investigated the effect of waste aluminum shavings on bond strength of laterized concrete. Laterized concrete spliced beams of $150{\times}250{\times}2150mm$ and $175{\times}275{\times}2300mm$ were prepared. Fifteen specimens with 16 mm and 20 mm were cast with the addition of aluminium shavings at varying percentages of 1vol%, 1.5vol% and 2vol%; another ten specimens with 16 mm and 20 mm diameter bars at 0% of aluminium shavings were cast as control. Concrete cubes of number were prepared, three taken for each set of various percentages of aluminium shavings were used to determine the concrete strength. It was observed from the analysis that the compressive strength decreased as the percentage of aluminium shavings increased, while the aluminium shavings increased the bond between concrete and steel. However, for normal concrete there was an increase in bond resistance with increase in aluminium shavings. The bond resistance of 16 mm was found to be higher than that of 20 mm in all the specimens tested.

On Shrinkage Cavities Shape Modeling for Fatigue Simulation of A356 Alloy Specimen (A356 합금 시편의 수축공 결함형상에 대한 피로해석용 형상 모델링 방법)

  • Kwak, Si-Young;Cho, In-Sung
    • Journal of Korea Foundry Society
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • During the casting process, it is possible to minimize shrinkage and blowholes by modifying the casting design. However, it is impossible to eliminate these factors completely. Therefore, mechanical design engineers apply a sufficient safety factor owing to the possibility of insufficient performances of the cast products. In this paper, prediction method of the fatigue life of cast products containing shrinkage is conducted by using CT (computed tomography) and the SSM (shape simplification method), and additional fatigue analyses are carried out. The analysis results are then compared to results from actual experiments on samples with shrinkage defects. It is found to be that the considering actual shrinkage in cast products by means of stress and fatigue analyses is more accurate and effective. It is also considered that the proposed hot spot method provides us a good tool to predict the fatigue lifes of cast product.

Grain Control of Aluminum Alloys with Electromagnetic Stirring for Rheology Forging (레오로지 단조를 위한 전자교반응용 알루미늄 합금의 결정립 제어)

  • Oh S. W.;Ko J. H.;Kim T. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.350-353
    • /
    • 2005
  • Microstructures according to experimental conditions (pouring temperature, stirring current and stirring time) and hardness according to aging time were investigated for A356 cast aluminum alloy and 7075 wrought aluminum alloy. In pouring temperature control, grains became larger and non-uniform at high temperature, however dendritic shapes were shown at lower temperature. In stirring current control, dendritic grains were not destroyed enough at lower current, however fine grains were agglomerated at higher current. And, in stirring time control, grains were more globular but grew larger and larger with the stirring time increasing.

  • PDF

Compressive Properties of Open Cell 6063 Aluminium Foam (개포형 6063 발포 알루미늄의 압축특성)

  • Bu, Sung-Duk;Kang, Bok-Hyun;Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.27 no.1
    • /
    • pp.36-41
    • /
    • 2007
  • Compressive properties of the open cell 6063 aluminum alloy foams made by the plaster molding process were investigated before and after heat treatment. Loading process was controlled at a displacement rate of 2 mm/min. Compressive strength of 10 PPI foam was the largest of the same density foams. Increase in strength after heat treatment for the bulk material was remark able, however was not for the 6063 aluminum foam. C values were in the range of $0.39{\sim}0.53$ for as cast foams and $0.13{\sim}0.16$ for T6 heat treated foams in the equation of ${sigma}^*_{pl}/{\sigma}_{ys}=C({\rho}/{\rho}_{s})^{1.5}$ and increased with cell size.