• 제목/요약/키워드: Cast Aluminum

검색결과 204건 처리시간 0.021초

자동차용 모터하우징에 관한 다이캐스팅 성형해석 (Die Casting Analysis of Motor Housing for Automobile)

  • 문찬용;박종배;정원영;한규택;정영득
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.769-773
    • /
    • 2002
  • The die easting process was used to manufacture a motor housing for automobile. Specially automobile parts were required light and high strength. Therefore simulations have been carried out die casting process of motor housing. In this paper, we investigated about characteristics of the die casted motor housing with HPDC(High Pressure Die Casting) process. Also the MAGMAsoft was used as computer simulation code and used material was ADC12(Aluminum Die Casting Alloy). We present the results of filling behavior and solidification process of a motor housing cast. The analysis results obtained about filling behavior and solidification of cast showed good agreement with test results.

  • PDF

Composite Hollow Bushing의 접합기술에 관한 연구 (A Study on Bonded Joints of Composite Hollow Bushing)

  • 조한구;강형경;유대훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.493-494
    • /
    • 2008
  • During the last years hollow core insulators started their success story in the field of high voltage engineering for electrical apparatus, substituting porcelain insulators. The termination, also named top and bottom fittings are used for the connection to the rest of the electrical apparatus. The top and bottom flange are attached to the composite to transmit mechanical load and also ensure the gas tightness. They are bonded by epoxy glue with a glass transition temperature of about $130^{\circ}C$-$150^{\circ}C$ the glass reinforced epoxy tube of filament winding. This paper describes the results of a study on the bonded joints of fiber reinforced epoxy tube and cast aluminum. This suggests that surface roughness and glue types play an important role in evaluating of gas sealing capability on the flange and fiber reinforced epoxy tube in the composite hollow bushing.

  • PDF

자동차용피스톤의 제조기술에 관한 실험적 연구 (An Experimental Study on the Manufacturing Technology of an Engine Piston)

  • 김영호;배원병;김형식;변홍석
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.83-92
    • /
    • 1998
  • In this paper, an experimental study has been carried out to develop an aluminum forged piston which has good mechanical properties. Through the experiment, the cavity filling, microstructure and mechanical properties of the final product are investigated with respect to chosen process parameters, which are die shape, heat-treatment condition and preform shape. The mechanical properties of the forged piston are compared with these of the cast piston. As the results, an appropriate die-shape is obtained to produce a perfect piston. The suitable heat-treatment condition and preform-shape are found to good hardness and minute microstructure in the forged piston. And we could obtain the mechanical properties(tensile strength, elongation and hardness) of the forged piston are superior to these of the cast piston.

  • PDF

고전도성 부품용 Al-Cu 주조복합재료의 계면 특성 (Interfacial Characteristics of Al-Cu Cast Composites for High Conductivity Applications)

  • 김정민;김남훈;고세현
    • 한국주조공학회지
    • /
    • 제38권3호
    • /
    • pp.55-59
    • /
    • 2018
  • To optimize the conductivity and to reduce the weight by as much as possible, Al-Cu composites were prepared through a suction-casting procedure. Pure copper metal foam was infiltrated by melted aluminum with the use of the vacuum, after which warm rolling was conducted to remove several remaining pores at the interface between the Cu foam and the aluminum matrix. Despite the short casting time, significant dissolution of Cu into the melt was observed. Moreover, it was found that various Al-Cu intermetallic compounds arose at the interface during the isothermal heating process after the casting and rolling steps. The average thickness of the Al-Cu intermetallic compound tended to increase in proportion to the heating time. The electrical and thermal conductivity levels of the cast composites were found to be comparatively low, mainly due to the dissolution of the Cu foam and the formation of intermetallics at the interface.

알루미늄 AC4CH 합금주물의 냉각속도 변화에 따른 기계적 물성 예측 및 전산모사 적용 (Prediction of Mechanical Properties with Different Cooling Rates of AC4CH Cast Aluminum Alloy and its Application in Computer Simulation)

  • 이병준;조인성
    • 한국주조공학회지
    • /
    • 제38권2호
    • /
    • pp.41-47
    • /
    • 2018
  • In a numerical study, equations relating the mechanical properties and cooling rate in a casting process have been applied to an AC4CH cast aluminum alloy. Good agreement was found between the measured and predicted material properties. Step-shaped steel blocks were made to comprise a casting mold with a Y-shaped cavity. Thermometers were inserted into each step of the mold to investigate temperature changes. The microstructure and mechanical properties, such as hardness and tensile stress were measured for each cut of piece. The correlation between the cooling rate and SDAS was found by curved fitting. Moreover, both the solidification time and the temperature were simulated using a commercial package, ZCast. The simulation results for yield strength, tensile strength, elongation, and hardness were compared with experimental results. Using the estimated K and n values, the hardness values of a ship propeller were simulated, and the results were similar to those obtained for actual castings.

고강도 고인성 Al-Mg-Zn 주조합금의 미세조직 및 특성 (Microstructure and Properties of High Strength High Ductility Al-Mg-Zn Casting Alloy)

  • 김정민;하태형
    • 한국주조공학회지
    • /
    • 제36권6호
    • /
    • pp.181-186
    • /
    • 2016
  • The typical microstructure of Al-5%Mg-2%Zn cast alloy mainly consists of an aluminum matrix with a small amount of AlMgZn 2nd phase. The secondary dendrite arm spacing and the grain size of the cast alloy tend to be inversely proportional to the section thickness of casting; however, the tensile properties cannot be said to be clearly related to the cast microstructure. After T6 heat treatment, the tensile strength of the alloy was enhanced significantly. TEM analysis results show that very fine AlMgZn precipitates were formed after the heat treatment. The corrosion resistance, measured according to the corrosion potential, was found to increase slightly after the conducting of heat treatment.

THE STATE OF THE ART OF THE INTERNAL PLASMA SPRAYING ON CYLINDER BORE IN AlSi CAST ALLOYS

  • Barbezat, G.
    • International Journal of Automotive Technology
    • /
    • 제2권2호
    • /
    • pp.47-52
    • /
    • 2001
  • For the wear protection of cylinder bore in aluminum cast material the internal plasma spraying technology offers a new economical solution. The size and the weight of the engine blocks significantly can be decreased in comparison with the traditional cast iron sleeves. The coefficient of friction between piston ring and cylinder wall sensitively can be reduced and the wear resistance increased from several factors. The paper gives an overview of the technology from the AlSi cast alloys for engine block to the non destructive testing technology used after the machining by diamond honing. The actual results in engines of different types also will be shown. The economical advantages of the plasma spraying (or the internal coating in cylinder bore also will be discussed in comparison with the different alternatives of technology. The aspect of the market introduction also will be discussed in this paper.

  • PDF

Advancement in Powder Metallurgy of Aluminum Alloys

  • Takeda, Yoshinobu
    • 한국분말재료학회지
    • /
    • 제5권4호
    • /
    • pp.340-344
    • /
    • 1998
  • Along with the growth of conventional ferrous powder metallurgy (PM), PM of aluminum alloys has been intensively investigated in Japan. Although rapidly solidified aluminum alloy powder was first used in the USA,/sup 1)/ commercialization for consumer market was first realized in Japan./sup 2)/ In order to achieve the viable cost-performance including Near Net Shape (NNS) formability, we developed three processes, powder extrusion, powder forging and sintering. The new powder extrusion process does not use either capsulation or vacuum degassing. The new powder forging does not need lateral flow. The new sintering process does not use liquid phase. The performance achieved by the processes is outstanding mechanical or physical properties that has potential to substitute cast iron, steel, titanium Metal Matrix Composite (MMC) or Ingot Metallurgy (IM) aluminum alloys. Cooperation with customers, powder suppliers and research associations contributed to the advancement of PM aluminum alloys in Japan.

  • PDF

주조 알루미늄합금 A356의 저주기 피로특성 및 피로수명 모델 (Low Cycle Fatigue Characteristics of A356 Cast Aluminum Alloy and Fatigue Life Models)

  • 고승기
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.131-139
    • /
    • 1993
  • Low cycle fatigue characteristics of cast aluminum alloy A356 with a yield strength and ultimate strength of 229 and 283 MPa respectively was evaluated using smooth axial specimen under strain controlled condition. Reversals to failure ranged from 16 to 107. The cast aluminum alloy exhibited cyclically strain-gardening behavior. The results of low cycle fatigue tests indicated that the conventional low cycle fatigue tests indicated that the conventional low cycle fatigue life model was not a satisfactory representation of the data. This occurred because the elastic strain-life curve was not-log-log linear and this phenomena caused a nonconservative and unsafe fatigue life prediction at both extremes of long and short lives. A linear log-log total strain-life model and a bilinear log-log elastic strain-life model were proposed in order to improve the representation of data compared to the conventional low cycle fatigue life model. Both proposed fatigue life models were statistically analyzed using F tests and successfully satisfied. However, the low cycle fatigue life model generated by the bilinear log-log elastic strain-life equation yielded a discontinuous curve with nonconservatism in the region of discontinuity. Among the models examined, the linear log-log total strain-life model provided the best representation of the low cycle fatigue data. Low cycle fatigue life prediction method based on the local strain approach could conveniently incorporated both proposed fatigue life models.

  • PDF