• Title/Summary/Keyword: Caspase3

Search Result 1,768, Processing Time 0.027 seconds

Retinoic acid loaded with chitosan nanoparticles improves spermatogenesis in scrotal hyperthermia in mice

  • Fatemeh Mazini;Mohammad-Amin Abdollahifar;Hassan Niknejad;Asma Manzari-Tavakoli;Mohsen Zhaleh;Reza Asadi-Golshan;Ali Ghanbari
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.4
    • /
    • pp.230-243
    • /
    • 2023
  • Objective: High temperatures can trigger cellular oxidative stress and disrupt spermatogenesis, potentially leading to male infertility. We investigated the effects of retinoic acid (RA), chitosan nanoparticles (CHNPs), and retinoic acid loaded with chitosan nanoparticles (RACHNPs) on spermatogenesis in mice induced by scrotal hyperthermia (Hyp). Methods: Thirty mice (weighing 25 to 30 g) were divided into five experimental groups of six mice each. The groups were as follows: control, Hyp induced by a water bath (43 ℃C for 30 minutes/day for 5 weeks), Hyp+RA (2 mg/kg/day), Hyp+CHNPs (2 mg/kg/72 hours), and Hyp+RACHNPs (4 mg/kg/72 hours). The mice were treated for 35 days. After the experimental treatments, the animals were euthanized. Sperm samples were collected for analysis of sperm parameters, and blood serum was isolated for testosterone measurement. Testis samples were also collected for histopathology assessment, reactive oxygen species (ROS) evaluation, and RNA extraction, which was done to compare the expression levels of the bax, bcl2, p53, Fas, and FasL genes among groups. Additionally, immunohistochemical staining was performed. Results: Treatment with RACHNPs significantly increased stereological parameters such as testicular volume, seminiferous tubule length, and testicular cell count. Additionally, it increased testosterone concentration and improved sperm parameters. We observed significant decreases in ROS production and caspase-3 immunostaining in the RACHNP group. Moreover, the expression levels of bax, p53, Fas, and FasL significantly decreased in the groups treated with RACHNPs and RA. Conclusion: RACHNPs can be considered a potent antioxidative and antiapoptotic agent for therapeutic strategies in reproductive and regenerative medicine.

Identification of 5-Hydroxy-3,6,7,8,3',4'-Hexamethoxyflavone from Hizikia fusiforme Involved in the Induction of the Apoptosis Mediators in Human AGS Carcinoma Cells

  • Kim, Min Jeong;Lee, Hye Hyeon;Seo, Min Jeong;Kang, Byoung Won;Park, Jeong Uck;Kim, Kyoung-Sook;Kim, Gi-Young;Joo, Woo Hong;Choi, Yung Hyun;Cho, Young-Su;Jeong, Yong Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1665-1672
    • /
    • 2012
  • An 80% ethanol extract of Hizikia fusiforme was obtained and followed by successive fractionation using the organic solvents n-hexane, ethyl acetate, and n-butanol to identify the antioxidative substance. The aqueous part of the nbutanol fractionation step, showing high antioxidative activity, was subjected to reverse-phase liquid chromatography. As a result, a substance purified from a BB-2 fraction showed high antioxidative activity. The m/z 419 [M+H] molecular ion peak in the fraction was observed by the analysis of the ESI-LC/MS spectrum. By the analysis of 1H NMR (500 MHz, DMSO-$d_6$) and $^{13}C$ NMR (125 MHz, DMSO-$d_6$) spectra, a unique compound of the fraction was biochemically identified as a 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5HHMF). We also investigated the effect of 5HHMF on human gastric AGS carcinoma cells. Western blot analysis suggested that the flavone substantially increased the levels of the death receptor-associated apoptosis mediators Fas, Fas L, FADD, TRADD, and DR4 in a concentration-dependent manner. The levels of Fas, Fas L, TRADD, and DR4 in the cells treated with 5HHMF ($5{\mu}g/ml$) were approximately 26.4-, 12.8-, 6.7-, and 9.8-times higher than those of non-treated cells, respectively. Of note, the level of FADD protein in the cells exposed to 5HHMF ($1{\mu}g/ml$) increased approximately 9.6-times. In addition, the cleavage of caspase-3, -8, and -9 in cultured AGS cells treated with 5HHMF was significantly confirmed. Therefore, our results suggest that 5HHMF from H. fusiforme is involved in the induction of death receptor-associated apoptosis mediators in human gastric AGS carcinoma cells.

Akebiae Caulis Inhibits Oxidative Stress through AM PK Activation (AMPK 활성화를 통한 목통의 항산화 효과)

  • Jung, Eun Hye;Kim, Sang Chan;Cho, Il Je;Kim, Young Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.18-26
    • /
    • 2015
  • Akebiae Caulis is a galenical originated from Akebia quinata Decaisne species. It is commonly used in the treatment of oposiuria, inflammation, nociceptive and fever. Here, we investigated the effect of Akebiae Caulis extract (ACE) to protect hepatocyte against the malfunction of mitochondria and apoptosis. Arachidonic acid (AA)+iron promoted excessive reactive oxygen species (ROS) production and exerted a deleterious effect on mitochondria. Treatment with ACE protected hepatocytes from AA+iron-induced cytotoxicity, as shown by alterations in the protein levels related with apoptosis such as poly(ADP-ribose) polymerase, pro-caspase 3, Bcl-XL and Bcl-2. Moreover, AA+iron-induced $H_2O_2$ production, GSH depletion and mitochondrial dysfunction were alleviated by ACE pretreatment. As a potential molecular mechanism for the ACE-mediated cytoprotection, phosphorylation of AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death, was increased by ACE. Moreover, ACE treatment enhanced inactive phosphorylation of glycogen synthase kinase-$3{\beta}$ ($GSK3{\beta}$), downstream substrate kinase of AMPK. More importantly, ACE prevented a decrease in the $GSK3{\beta}$ phosphorylation derived by AA+iron, which might contribute to mitohondiral protection and cell survival. To further identify essential compounds in Akebiae Caulis for the protection of AA+iron-mediated cytotoxicity, we found that betulin in combination with hederagenin protected from AA+iron-induced mitochondrial dysfunction. Betulin+hederagenin treatment also increased inactive phosphorylation of $GSK3{\beta}$ in common with ACE. These results suggest that ACE protected hepatocytes against oxidative stress and mitochondrial dysfunction, which is mediated with inactive $GSK3{\beta}$ phosphorylation downstream of AMPK.

The role of discoid domain receptor 1 on renal tubular epithelial pyroptosis in diabetic nephropathy

  • Zhao, Weichen;He, Chunyuan;Jiang, Junjie;Zhao, Zongbiao;Yuan, Hongzhong;Wang, Facai;Shen, Bingxiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.427-438
    • /
    • 2022
  • Pyroptosis, a form of cell death associated with inflammation, is known to be involved in diabetic nephropathy (DN), and discoid domain receptor 1 (DDR1), an inflammatory regulatory protein, is reported to be associated with diabetes. However, the mechanism underlying DDR1 regulation and pyroptosis in DN remains unknown. We aimed to investigate the effect of DDR1 on renal tubular epithelial cell pyroptosis and the mechanism underlying DN. In this study, we used high glucose (HG)-treated HK-2 cells and rats with a single intraperitoneal injection of streptozotocin as DN models. Subsequently, the expression of pyroptosis-related proteins (cleaved caspase-1, GSDMD-N, Interleukin-1β [IL-1β], and interleukin-18 [IL-18]), DDR1, phosphorylated NF-κB (p-NF-κB), and NLR family pyrin domain-containing 3 (NLRP3) inflammasomes were determined through Western blotting. IL-1β and IL-18 levels were determined using ELISA. The rate of pyroptosis was assessed by propidium iodide (PI) staining. The results revealed upregulated expression of pyroptosisrelated proteins and increased concentration of IL-1β and IL-18, accompanied by DDR1, p-NF-κB, and NLRP3 upregulation in DN rat kidney tissues and HG-treated HK-2 cells. Moreover, DDR1 knockdown in the background of HG treatment resulted in inhibited expression of pyroptosis-related proteins and attenuation of IL-1β and IL-18 production and PI-positive cell frequency via the NF-κB/NLRP3 pathway in HK-2 cells. However, NLRP3 overexpression reversed the effect of DDR1 knockdown on pyroptosis. In conclusion, we demonstrated that DDR1 may be associated with pyroptosis, and DDR1 knockdown inhibited HG-induced renal tubular epithelial cell pyroptosis. The NF-κB/NLRP3 pathway is probably involved in the underlying mechanism of these findings.

Regulation of ER Stress Response on 1,2,3-Trichloropropane-Induced Hepatotoxicity of Sprague Dawley Rats (1,2,3-Trichloropropane으로 유도된 SD랫드의 간독성에서 ER 스트레스 반응의 조절)

  • Tae Ryeol Kim;You Jeong Jin;Ji Eun Kim;Hee Jin Song;Yu Jeong Roh;Ayun Seol;Eun Seo Park;Ki Ho Park;Su Jeong Lim;Su Ha Wang;Yong Lim;Dae Youn Hwang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 2024
  • Endoplasmic reticulum (ER) stress responses are markedly induced during toxic responses caused by various chemical substances, including difenoconazole, but no research has been conducted on 1,2,3-trichloropropane (TCP), a chemical that is generally used in agriculture and industry, which induces hepatotoxicity. Therefore, in this study, the changes in indicators for hepatotoxicity, apoptosis, and ER stress were analyzed in TCP-treated Sprague Dawley (SD) rats to study the regulatory mechanism of ER stress during the hepatotoxicity. The TCP-treated group decreased in body weight and dietary intake compared to the vehicle-treated group, and necrosis and vacuolation increased significantly in liver histology. In addition, the expression of apoptosis-related factors, including Bax/Bcl-2 and cleaved caspase (Cas)-3/Cas-3 increased significantly in the TCP-treated group compared to the vehicle-treated group. In the analysis of ER stress response indicators, the expression of C/EBP homologous protein (CHOP), phospho-eukaryotic translation initiation factor 2 alpha subunit (eIF2α), and phospho-inositol-requiring enzyme 1α (IRE1α) increased only in the TCP100-treated group and decreased in the TCP200-treated group. However, the transcriptions of growth arrest and DNA damage-34 (GADD34) increased in the TCP200-treated group, while Spliced X-box binding protein-1 (XBP1s) and unspliced XBP1(XBP1u) decreased in the same group. These results suggest that the ER stress response is successfully triggered during the hepatotoxicity induced by TCP treatment through the alternative regulation of the unfolded-protein response (UPR) pathway.

Effects of Sea Buckthorn (Hippophae rhamnoides L.) Fruit Extract on Ultraviolet-induced Apoptosis of Skin Fibroblasts (UV조사에 의해 유도된 피부섬유아세포의 세포사에 미치는 Sea Buckthorn (Hippophae rhamnoides L.) 열매추출물의 영향)

  • Hwang, In Sik;Koh, Eun Kyoung;Kim, Ji Eun;Lee, Young Ju;Kwak, Moon Hwa;Go, Jun;Sung, Ji Eun;Song, Sung Hwa;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.467-475
    • /
    • 2014
  • Sea buckthorn (Hippophae rhamnoides L.) is a well-known and rich source of biologically active compounds, such as flavonoids, carotenoids, steroids, vitamins, tannins, and oleic acid. The effects of sea buckthorn fruit extract (SBFE) on ultraviolet (UV)-induced cell death was investigated in SK-MEL-2 cells cotreated with UV and a low concentration (LoC), medium concentration (MeC), or high concentration (HiC) of SBFE. Cell viability gradually decreased in accordance with an increase in the UV dose. The cell viability of the UV+SBFE cotreated cells increased significantly compared to that of UV+vehicle-treated cells during the application of an appropriate UV radiation dose (400 mJ). In addition, the number of 4',6-diamidino-2-phenylindole (DAPI), propidium iodine (PI)-, and annexin V-stained apoptotic cells was higher in the UV+vehicle-treated cells than in the UV untreated cells. The decrease of apoptotic cell numbers varied in each treated group, but it was most significant in the SBFE-treated group. The number of PI-stained cells dramatically decreased in accordance with the concentration of SBFE, and the maximum decrease was detected in the UV+HiC-treated group. In addition, Bax expression increased and Bcl-2 expression decreased in the SBFE-treated group compared with the UV-only treated group. The level of caspase-3 remained constant in all the groups. These results suggest that SBFE may contribute to a recovery from UV-induced cell death through the regulation of apoptotic protein expression and that it may have potential therapeutic utility in ameliorating UV-induced skin ageing.

Anti-oxidative and Anti-cancer Activities of Methanol Extract of Machaerium cuspidatum (Machaerium cuspidatum 메탄올 추출물의 항산화 및 항암활성에 관한 연구)

  • Jin, Soojung;Oh, You Na;Park, Hyun-jin;Kwon, Hyun Ju;Kim, Byung Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.432-441
    • /
    • 2016
  • Machaerium cuspidatum, a canopy liana, is a species of genus legume in the Fabaceae family and contributes to the total species richness in the tropical rain forests. In the present study, we investigated the antioxidative and anti-cancer effects of M. cuspidatum and its mode of action. The methanol extract of M. cuspidatum (MEMC) exhibited anti-oxidative activity with an $IC_{50}$ value of $1.66{\mu}g/ml$, and this was attributable to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. MEMC also exhibited a cytotoxic effect and induced morphological changes in a dose-dependent manner in several cancer cell lines including human lung adenocarcinoma A549 cells, human hepatocellular carcinoma HepG2 cells, and human colon carcinoma HT29 cells. Moreover, MEMC treatment induced the accumulation of subG1 population, which is indicative of apoptosis in A549 and HepG2 cells. MEMC-induced apoptosis was confirmed by the increase in Annexin V-positive apoptotic cells and apoptotic bodies using Annexin-V staining and DAPI staining, respectively. Further investigation showed that MEMC-induced apoptosis was associated with the increase in p53 and Bax expression, and the decrease in Bcl-2 expression. In addition, MEMC treatment led to proteolytic activation of caspase-3, 8, and 9 and degradation of poly-ADP ribose polymerase (PARP). Taken together, these results suggest that MEMC may exert a beneficial anti-cancer effect by inducing apoptosis via both the extrinsic and intrinsic pathways in A549 and HepG2 cells.

Relationship between Expression of XIAP Protein in Operable Non-small Cell Lung Carcinomas and Apoptosis Index and Postoperative Prognosis (비소세포폐암조직에서 XIAP 발현과 고사지수 및 수술 후 예후와의 관계)

  • Kim, Sang Hyun;Lee, Chang Hun;Sol, Mee Young;Song, Jin Mi;Lee, Jong Hyub;Lee, Min Ki;Kim, Jong Min
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.5
    • /
    • pp.480-489
    • /
    • 2005
  • Background : Dysregulation of apoptosis plays an important role in carcinogenesis, tumor progression, and resistance to chemotherapy. X-linked inhibitor of apoptosis (XIAP) is considered to be the most potent caspase inhibitor of all known IAP (inhibitor of apoptosis) family members. This study was designed to assess the pattern of expression and the prognostic value of XIAP in radically resected non-small cell lung carcinoma (NSCLC) patients. Method : The expression of XIAP and its relationship with clinicopathologic parameters (patient age, TNM stage, TNM-pT, TNM-pN, histologic type, VEGF expression, microvessel density, PCNA index) and overall survival were analysed with formalin-fixed, paraffin-embedded blocks from eighty cases of NSCLC. In addition, the apoptotic index (AI) was also assessed. Results : In a regard to histologic type, squamous cell carcinoma (SCC) showed XIAP expression in 91.3%(42/46) and adenocarcinoma (AC) in 61.8%(21/34). The difference was significant(p=0.001). There was no correlation between XIAP expression and other parameters. In the group of AC, XIAP expression showed the signifcant correlation with older age group ${\geq}58years$ and VEGF expression(p=0.028, p=0.014, respectively). The AI in the group with or without XIAP expression were $2.5{\pm}4.9%$ and $18.5{\pm}28.9%$, respectively(p=0.001). Both groups just aforementioned showed no significant difference in median survival time (42.5 months, 29.8 months, respectively). Conclusion : This study suggests that the XIAP expression in NSCLCs could have relation to inhibition of apoptosis, and show differential expression according to histologic type. However, its prognostic role during the progression of NSCLC needs to be further defined.

Anti-Inflammatory Effects of Poly-${\gamma}$-Glutamic Acid on DNCB-Induced Allergic Contact Dermatitis in Dogs (개에서 DNCB에 의해 유발된 알레르기성 접촉피부염에 대한 폴리감마글루탐산의 항염증 효과)

  • Kim, Hyun-Gon;Kim, Kil-Soo;Oh, Tae-Ho
    • Journal of Veterinary Clinics
    • /
    • v.29 no.4
    • /
    • pp.283-296
    • /
    • 2012
  • Allergic contact dermatitis (ACD) is an inflammatory skin disease and regarded as a prototype of T-cell mediated delayed-type hypersensitivity reactions. Poly-${\gamma}$-glutamic acid (PGA) is a biodegradable polymer that is produced by Bacillus subtilis. This study was performed to assess the effects of PGA in a canine model of ACD. ACD was induced on the back of dogs induced by sensitization and repeated application by 2,4-dinitro-1-chlorobenzene (DNCB). Topical treatment of PGA was applied once a day for 12 days and skin biophysical parameters including transepidermal water loss (TEWL), skin hydration, skin pH, skin thickness and erythema index, were measured every two days during experimental periods. Histopathology and immunohistochemistry were performed to evaluate the antiinflammatory effect. In skin biophysical parameters, TEWL, skin hydration, skin thickness and erythema index were significantly increased, with a maximum increase appeared on day 2 (p < 0.05). On the other hand, skin pH was significantly decreased, with a maximum decrease appeared on day 2 (p < 0.01). After the completion of PGA treatment, skin biophysical parameters were significantly reached those of baseline in a time-dependent manner (p < 0.05). In histopathology, marked increases of epidermal thicknesses were induced after DNCB challenge with numerous inflammatory cell infiltrations and edematous changes, decreases of connective tissue occupied regions in dermis. In addition, marked increases of cytokine - tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interferon-${\gamma}$ (IFN-${\gamma}$)-immunoreactivities in the dermis and of apoptotic markers - caspase-3 and PARP-immunoreactivities in the epidermis were observed in DNCB-PBS control as compared with intact control, respectively (p < 0.01). It means, the ACD and related apoptotic changes were induced by DNCB in the present study. However, these ACD induced by DNCB and related apoptosis in epidermis were significantly inhibited by treatment of PGA treated skin, the decreases of infiltrated inflammatory cells and related decreases of pro-inflammatory cytokine immunoreactivities were also observed (p < 0.01). Based on these findings, PGA may have anti-inflammatory and alleviatory effects in the allergic contact dermatitis.

Isolation and Structure Identification of Photosensitizer from Perilla frutescens Leaves Which Induces Apoptosis in U937 (들깻잎(Perilla frutescens)으로부터 U937 세포에 apoptosis를 유도하는 광과민성 물질의 분리 및 구조동정)

  • Ha, Jun Young;Kim, Mi Kyeong;Lee, Jun Young;Choi, Eun Bi;Hong, Chang Oh;Lee, Byong Won;Bae, Chang Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we tried to separate the photosensitizer that induces apoptosis of leukemia cells (U937) from perilla leaves. Perilla leaves (Perilla frutescens Britt var. japonica Hara) are a popular vegetable in Korea, being rich in vitamins (A and E), GABA, and minerals. Dried perilla leaves were extracted with methanol to separate the photosensitizer by various chromatographic techniques. The structure of the isolated compound (PL9443) was identified by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. Absorbance of the UV-Vis spectrum was highest at 410 nm and was confirmed by the 330, 410, and 668 nm. PL9443 compound was determined to be pheophorbide, an ethyl ester having a molecular weight of 620. It was identified as a derivative compound of pheophorbide structure when magnesium comes away from a porphyrin ring. Observation of morphological changes in U937 cells following cell death induced by treated PL9443 compound revealed representative phenomena of apoptosis only in light irradiation conditions (apoptotic body, vesicle formation). Results from examining the cytotoxicity of PL9443 substance against U937 cells showed that inhibition rates of the cell growth were 99.9% with the concentration of 0.32 nM PL9443. Also, the caspase-3/7 activity was 99% against U937 cells with the concentration of 0.08 nM of PL9443 substance. The result of the electrophoresis was that a DNA ladder was formed by the PL9443. The PL9443 compound is a promising lead compound as a photosensitizer for photodynamic therapy of cancer.