• Title/Summary/Keyword: Cask

Search Result 206, Processing Time 0.025 seconds

Radiation Shielding Analysis of CANDU Spent Fuel Transport Cask (CANDU 사용후핵연료 수송용기 방사선차폐 영향평가)

  • Choi, Jong-Rak;Yoon, Jung-Hyun;Kang, Hee-Young;Lee, Heung-Young;Chung, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 1993
  • A shielding analysis of the shipping cask for transporting the CANDU spent fuel bundles has been studied. Radiation source term has been calculated on spent fuel with burn-up of 7,800 MWD/MTU and 5 years cooling time by ORIGEN2 code. The shielding calculation for the cask capable of transporting 378 bundles of CANDU spent fuel has been made by use of 1-D ANISN and 2-D DOT 4.2 codes. As a result of analysis, the optimum shield thickness of cask was obtained. And it is proved that the safety in radiation shielding under normal transport and hypothetical accident conditions is confirmed to satisfy the allowable values specified in IAEA Safety Series No. 6 and the Korean Atomic Law.

  • PDF

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.

Seismic Rocking Response Analysis of 1/8 Scale Model for a Spent Fuel Storage Cask (사용후 연료 건식저장용기 1/8규모 축소모형 지진회전응답해석)

  • Lee J.H.;Seo K.S.;Koo G.H.;Cho C.H.;Choi B.I.;Lee H.Y.;Yeom S.H.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.383-389
    • /
    • 2005
  • This research is to develop a seismic response analysis method for a spent fuel storage cask. FEM model is built for the test model of 1/8 scale spent fuel dry storage cask using available 3D contact conditions in ABAQUS/Explicit. Input load for this analysis os a seismic wave of El-centro earthquake, and the friction and damping coefficients in the analysis condition we obtained from the test result. Penalty and kinematic contact methods of ABAQUS are used for mechanical contact formulation. The analysis method was verified for rocking angle obtained by seismic response tests. The kinematic contact method with an adequate normal contact stiffness showed a good agreement with tests.

  • PDF

Rotational position control of RCGLUD using input shaping algorithm (입력 다듬기를 이용한 사용후 핵연료 수송용기 취급장치의 회전 위치제어)

  • 김동기;박영수;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1060-1063
    • /
    • 1996
  • Remote Cask Grappling and Lid Unbolting Device (RCGLUD) is developed as a dedicated device capable of performing complete procedure of handling nuclear spent fuel transport cask. Since RCGLUD is suspended to an overhead crane, its body should undergo prolonged vibration upon actuation in rotational direction and it becomes difficult to achieve precise grappling of the cask. Therefore, this paper presents an adaptation of input shaping technique to effectively suppress the rotational vibration of RCGLUD and achieve precise positioning in rotational direction. This technique has a practical merit in that it requires only the information on the system natural frequency and the damping ratio. Its performance is verified by both simulation and experimental studies, and revealed that the method is also insensitive to modeling error.

  • PDF

Implementation of automatic mode for remote impact wrench task (로보트를 이용한 원격조작 임팩트렌치 작업의 자동수행 기능부 구현)

  • 박영수;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.832-837
    • /
    • 1991
  • After many years of proliferation, the nuclear industry is indebted for a formidable consequence, the safe management of spent fuel. Naturally, the high radioactivity involved with such process motivates the development of effective telerobotic systems. Nevertheless, the existing master-slave type of tele manipulators are limited in effectiveness by the human operator's limited sensory and manipulation capabilities. This paper presents the result of a research effort to resolve such problems by assigning the slave manipulator a certain degree of intelligence; sensing and actuation. In the presented system, a perception-action loop is achieved using ultrasonic range sensor and laser distance sensor interfaced with the PUMA 760 industrial robot system, and applied to automating impact wrenching task for unbolting the lid of nuclear spent fuel cask. The perception-action loop performs determination of the cask location, collision avoidance and centering of the impact wrench onto the bolt head. To aid the insertion task and to provide versatility a mounting module consisting of an RCC device and an automatic tool changer is designed and implemented. The performance of the developed system is tested on the model cask and the result is given.

  • PDF

Analytical approach on nonlinear vibration of dry cask storage systems

  • Bayat, M.;Soltangharaei, V.;Ziehl, P.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.239-246
    • /
    • 2020
  • In this paper, a novel analytical method, Max-Min Approach (MMA), has been presented and applied to consider the nonlinear vibration of dry cask storage systems. The nonlinear governing equation of the structure has been developed using the shell theory. The MMA results are compared with numerical solutions derived by Runge-Kutta's Method (RKM). The results indicate a satisfying agreement between MMA and numerical solutions. Parametric studies have been conducted on the nonlinear frequency of dry casks. The phase-plan of the problem is also presented and discussed. The proposed approach can potentially ca be extended to highly nonlinear problems.

The construction of a PLC simulator for level control (유량 제어을 위한 PLC 시뮬레이터 구성)

  • Lee, Gi-Bum;Yoon, Woo-Sik;Jeong, Hee-Don;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2605-2607
    • /
    • 2000
  • This paper represents the construction of a PLC simulator for the level control of water and the speed control of the water cask. The level and speed processes are automatically operated by the PLC. The simulator system consists of PLC, program loader and control penal. The digital input and output units make the valves of the water cask the On or Off state. The analog input and output units control the level of water and the speed of the water cask. A LD program is used in the control language of PLC.

  • PDF

Analysis Method on the Free Drop Impact Condition of Spent Nuclear Fuel Shipping Casks (자유낙하충격조건에 있는 사용후핵연료 운반용기의 충격해석방법 연구)

  • 이재형;이영신;류충현;나재연
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.766-771
    • /
    • 2001
  • The package used to transport radioactive materials, which is called by cask, must be safe under normal and hypothetical accident conditions. These requirements for the cask design must be verified through test or finite element analysis. Since the cost for FE analysis is less than one for test. the verification by FE analysis is mainly used. But due to the complexity of mechanical behaviors. the results depends on how users apply the codes and it can cause severe errors during analysis. In this paper, finite element analysis is carried out for the 9 meters free drop and the puncture condition of the hypothetical accident conditions using LS-DYNA3D and ABAQUS/Explicit. We have investigated the analyzing technique for the free drop impact test of the cask and found several vulnerable cases to errors. The analyzed results were compared with each other. We have suggested a reliable and relatively simple analysis technique for the drop test of spent nuclear fuel casks.

  • PDF

Thermal Analysis of Transportation and Storage Cask of Spent Nuclear Fuel for Forced Gas Drying Condition

  • Lim, Suk-Nam;Chae, Gyung-Sun;Han, Jae-Hyun;Park, Jae-Seok;Lee, Dong-Gyu
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2017.05a
    • /
    • pp.153-154
    • /
    • 2017
  • The thermal analysis of transportation and storage cask for SNF was conducted during short term loading operations for forced gas drying condition. The fuel cladding temperature in 6 regions of SNF in the cask during the short term loading operations for forced gas drying condition is shown in the Fig. 3. The thermal analysis results of calculated maximum cladding temperature in each process demonstrate that operating scenario of TFD in detailed design maintain well below the temperature limits of $400^{\circ}C$.

  • PDF

Design Optimization of an Impact Limiter Considering Material Uncertainties

  • Lim, Jongmin;Choi, Woo-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.133-149
    • /
    • 2022
  • The design of a wooden impact limiter equipped to a transportation cask for radioactive materials was optimized. According to International Atomic Energy Agency Safety Standards, 9 m drop tests should be performed on the transportation cask to evaluate its structural integrity in a hypothetical accident condition. For impact resistance, the size of the impact limiter should be properly determined for the impact limiter to absorb the impact energy and reduce the impact force. Therefore, the design parameters of the impact limiter were optimized to obtain a feasible optimal design. The design feasibility criteria were investigated, and several objectives were defined to obtain various design solutions. Furthermore, a probabilistic approach was introduced considering the uncertainties included in an engineering system. The uncertainty of material properties was assumed to be a random variable, and the probabilistic feasibility, based on the stochastic approach, was evaluated using reliability. Monte Carlo simulation was used to calculate the reliability to ensure a proper safety margin under the influence of uncertainties. The proposed methodology can provide a useful approach for the preliminary design of the impact limiter prior to the detailed design stage.