• Title/Summary/Keyword: Case based Reasoning

Search Result 449, Processing Time 0.024 seconds

Study on Inference and Search for Development of Diagnostic Ontology in Oriental Medicine (한의진단 Ontology 구축을 위한 추론과 탐색에 관한 연구)

  • Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.745-750
    • /
    • 2009
  • The goal of this study is to examine on reasoning and search for construction of diagnosis ontology as a knowledge base of diagnosis expert system in oriental medicine. Expert system is a field of artificial intelligence. It is a system to acquire information with diverse reasoning methods after putting expert's knowledge in computer systematically. A typical model of expert system consists of knowledge base and reasoning & explanatory structure offering conclusion with the knowledge. To apply ontology as knowledge base to expert system practically, consideration on reasoning and search should be together. Therefore, this study compared and examined reasoning, search with diagnosis process in oriental medicine. Reasoning is divided into Rule-based reasoning and Case-based reasoning. The former is divided into Forward chaining and Backward chaining. Because of characteristics of diagnosis, sometimes Forward chaining or backward chaining are required. Therefore, there are a lot of cases that Hybrid chaining is effective. Case-based reasoning is a method to settle a problem in the present by comparing with the past cases. Therefore, it is suitable to diagnosis fields with abundant cases. Search is sorted into Breadth-first search, Depth-first search and Best-first search, which have respectively merits and demerits. To construct diagnosis ontology to be applied to practical expert system, reasoning and search to reflect diagnosis process and characteristics should be considered.

Development of an Intelligent Program for Diagnosis of Electrical Fire Causes (전기화재 원인진단을 위한 지능형 프로그램 개발)

  • 권동명;홍성호;김두현
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.50-55
    • /
    • 2003
  • This paper presents an intelligent computer system, which can easily diagnose electrical fire causes, without the help of human experts of electrical fires diagnosis. For this system, a database is built with facts and rules driven from real electrical fires, and an intellectual database system which even a beginner can diagnose fire causes has been developed, named as an Electrical Fire Causes Diagnosis System : EFCDS. The database system has adopted, as an inference engine, a mixed reasoning approach which is constituted with the rule-based reasoning and the case-based reasoning. The system for a reasoning model was implemented using Delphi 3, one of program development tools, and Paradox is used as a database building tool. To verify effectiveness and performance of this newly developed diagnosis system, several simulated fire examples were tested and the causes of fire examples were detected effectively by this system. Additional researches will be needed to decide the minimal significant level of the solution and the weighting level of important factors.

User's Context Reasoning using Data Mining Techniques (데이터 마이닝 기법을 이용한 사용자 상황 추론)

  • Lee Jae-Sik;Lee Jin-Cheon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.122-129
    • /
    • 2006
  • The context-awareness has become the one of core technologies and the indispensable function. for application services in ubiquitous computing environment. In this research, we incorporated the capability of context-awareness in a music recommendation system. Our proposed system consists of such components as Intention Module, Mood Module and Recommendation Module. Among these modules, the Intention Module infers whether a user wants to listen to the music or not from the environmental context information. We built the Intention Module using data mining techniques such as decision tree, support vector machine and case-based reasoning. The results showed that the case-based reasoning model outperformed the other models and its accuracy was 84.1%.

  • PDF

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

A Knowledge-based Electrical Fire Cause Diagnosis System using Fuzzy Reasoning (퍼지추론을 이용한 지식기반 전기화재 원인진단시스템)

  • Lee, Jong-Ho;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.16-21
    • /
    • 2006
  • This paper presents a knowledge-based electrical fire cause diagnosis system using the fuzzy reasoning. The cause diagnosis of electrical fires may be approached either by studying electric facilities or by investigating cause using precision instruments at the fire site. However, cause diagnosis methods for electrical fires haven't been systematized yet. The system focused on database(DB) construction and cause diagnosis can diagnose the causes of electrical fires easily and efficiently. The cause diagnosis system for the electrical fire was implemented with entity-relational DB systems using Access 2000, one of DB development tools. Visual Basic is used as a DB building tool. The inference to confirm fire causes is conducted on the knowledge-based by combined approach of a case-based and a rule-based reasoning. A case-based cause diagnosis is designed to match the newly occurred fire case with the past fire cases stored in a DB by a kind of pattern recognition. The rule-based cause diagnosis includes intelligent objects having fuzzy attributes and rules, and is used for handling knowledge about cause reasoning. A rule-based using a fuzzy reasoning has been adopted. To infer the results from fire signs, a fuzzy operation of Yager sum was adopted. The reasoning is conducted on the rule-based reasoning that a rule-based DB system built with many rules derived from the existing diagnosis methods and the expertise in fire investigation. The cause diagnosis system proposes the causes obtained from the diagnosis process and showed possibility of electrical fire causes.

Ontology Design of Semantic Case Based Reasoning System for the Share and Exchange of Sub-Cases (세부사례의 공유 및 교환을 위한 시맨틱 사례기반추론 시스템 온톨로지의 설계)

  • Park, Sangun;Kang, Juyoung
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.4
    • /
    • pp.195-214
    • /
    • 2013
  • Case-based reasoning is a methodology for solving problems more quickly and efficiently by bringing the most similar case of a given problem from past cases and transforming it to fit the current situation. The most important performance indicator of case-based reasoning is the number of cases, so it is difficult to apply the methodology for the area which has not enough cases. In this paper, we proposed a method to exchange cases based on the Semantic Web in order to overcome the problems. Inparticular, we separated cases into sub-cases to make it possible creating new cases by combining the appropriate sub-cases even if there was no proper full case. In order to achieve that, we designed an ontology that connects a case and its sub-cases, represents detailed similarity rules that compare sub-cases, and represents the rules for the combination of sub-cases. Moreover, we designed and implemented a semantic distributed case-based reasoning framework where a case requester can request sub-cases via the Web from case providers and integrates sub-cases into a new case by using the ontology.

Recommending System of Products on e-shopping malls based on CBR and RBR (사례기반추론과 규칙기반추론을 이용한 e-쇼핑몰의 상품추천 시스템)

  • Lee, Gun-Ho;Lee, Dong-Hun
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1189-1196
    • /
    • 2004
  • It is a major concern of e-shopping mall managers to satisfy a variety of customer's desire by recommending a proper product to the perspective purchaser. Customer information like customer's fondness, age, gender, etc. in shopping has not been used effectively for the customers or the suppliers. Conventionally, e-shopping mall managers have recommended specific items of products to their customers without considering thoroughly in a customer point of view. This study introduces the ways of a choosing and recommending of products using case-based reasoning and rule-based reasoning for customer themselves or others. A similarity measure between one member's idiosyncrasy and the other members' is developed based on the rule base and the case base. The case base is improved for the system intelligence by recognizing and learning the changes of customer's desire and shopping trend.

A Hybrid Approach Using Case-based Reasoning and Fuzzy Logic for Corporate Bond Rating

  • Kim, Hyun-jung;Shin, Kyung-shik
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.474-483
    • /
    • 2003
  • A number of studies for corporate bond rating classification problems have demonstrated that artificial intelligence approaches such as Case-based reasoning (CBR) can be alternative methodologies to statistical techniques. CBR is a problem solving technique in that the case specific knowledge of past experience is utilized to find a most similar solution to the new problems. To build a successful CBR system to deal with human information processing, the representation of knowledge of each attribute is an important key factor We propose a hybrid approach of using fuzzy sets that describe the approximate phenomena of the real world because it handles inexact knowledge represented by common linguistic terms in a similar way as human reasoning compared to the other existing techniques. Integration of fuzzy sets with CBR is important to develop effective methods for dealing with vague and incomplete knowledge to statistical represent using membership value of fuzzy sets in CBR.

  • PDF

Integrating Case-Based Reasoning with DSS (DSS와 사례기반 추론의 결합)

  • Kim Jin-Baek
    • Management & Information Systems Review
    • /
    • v.2
    • /
    • pp.169-193
    • /
    • 1998
  • Case- based reasoning(CBR) offers a new approach for developing knowledge based systems. Unlike the rule-based paradigm, in which domain knowledge is encoded in the form of production rules, in the case-based approach the problem solving experience of the domain expert is encoded in the form of cases stored in a casebase(CB). CBR allows a reasoner (1) to propose solutions in domains that are not completely understood by the reasoner, (2) to evaluate solutions when no algorithmic method is available for evaluation, and (3) to interprete open-ended and ill-defined concepts. CBR also helps reasoner (4) take actions to avoid repeating past mistakes, and (5) focus its reasoning on important parts of a problem. Owing to the above advantages, CBR has successfully been applied to many kinds of problems such as design, planning, diagnosis and instruction. In this paper, I propose case-based DSS(CBDSS). CBDSS is an intelligent DSS using CBR technique. CBDSS consists of interface, case-based reasoner, maintainer, casebase management system, domain dependent CB, domain independent CB, and so on.

  • PDF

Electrical Fire Cause Diagnosis System Using a Knowledge Base

  • Lee, Jong-Ho;Kim, Doo-Hyun;Kim, Sung-Chul
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.27-32
    • /
    • 2007
  • For last several decades with the achievement of fast economic development, the electrical fires occupies over 30 percent of total fire incidents almost every year in Korea and not decreased in spite of much times and efforts. Electrical fire cause diagnostics are to confirm a cause for the fire by examination of fire scene. Cause diagnosis methods haven't been systematized yet, because of limits for available information, investigator's biased knowledge, etc. Therefore, in order to assist the investigators and to find out the exact causes of electrical fires, required is research for an electrical fire cause diagnosis system using DB, computer programming and some mathematical tools. The electrical fire cause diagnosis system has two functions of DB and electrical fire cause diagnosis. The cause diagnosis is conducted by a case-based reasoning on a case base and rule-based reasoning on a rule base. For the diagnosis with high reliability, a mixed reasoning approach of a case-based reasoning and fuzzy rule-based reasoning has been adopted. The electrical fire cause diagnosis system proposes the electrical fire causes inferred from the diagnosis processes, and possibility of the causes as well.