• Title/Summary/Keyword: Cascades

Search Result 287, Processing Time 0.03 seconds

Cell Signaling Cascades as Prime Targets for Chemoprevention with Dietary Phytochemicals

  • Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.92-93
    • /
    • 2003
  • Chemoprevention refers to the use of agents to inhibit, reverse, or retard tumorigenesis. Numerous phytochemicals present in edible plants have been reported to interfere with a specific stage of the carcinogenic process. Some antioxidative and anti-inflammatory substances derived from dietary or medicinal plants exert chemopreventive properties by targeting intracellular signaling molecules or events.(omitted)

  • PDF

An experimental study on the secondary flow and losses in turbine cascades (익렬 통로 내의 2차유동 및 손실에 관한 실험 연구)

  • Jeong, Yang-Beom;Sin, Yeong-Ho;Kim, Sang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.12-24
    • /
    • 1998
  • The paper presents the mechanism of secondary flows and the associated total pressure losses occurring in turbine cascades with turning angle of about 127 and 77 degree. Velocity and pressure measurements are taken in seven traverse planes through the cascade passage using a prism type five hole probe. Oil-film flow visualization is also conducted on blade and endwall surfaces. The characteristics of the limiting streamlines show that the three dimensional separation is an important flow feature of endwall and blade surfaces. The larger turning results in much stronger contribution of the secondary flows to the loss developing mechanism. A large part of the endwall loss region at downstream pressure side is found to be very thin when compared to that of the cascade inlet and suction side endwall. Evolution of overall loss starts quite early within the cascade and the rate of the loss growth is much larger in the blade of large turning angle than in the blade of small turning angle.

Effect of Neutron Energy Spectra on the Formation of the Displacement Cascade in ${\alpha}-Iron$

  • Kwon Junhyun;Seo Chul Gyo;Kwon Sang Chul;Hong Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.497-505
    • /
    • 2003
  • This paper describes a computational approach to the quantification of primary damage under irradiation and demonstrates the effect of neutron energy spectra on the formation of the displacement cascade. The development of displacement cascades in ${\alpha}-Iron$ has been simulated using the MOLDY code - a molecular dynamics code for simulating radiation damage. The primary knock-on atom energy, key input to the MOLDY code, was determined from the SPECTER code calculation on two neutron spectra. The two neutron spectra include; (i) neutron spectrum in the instrumented irradiation capsule of the high-flux advanced neutron application reactor (HANARO), and (ii) neutron spectrum at the inner surface of the reactor pressure vessel steel for the Younggwang nuclear power plant No.5 (YG 5). Minor differences in the normalized neutron spectra between the two spectra produce similar values of PKA energy, which are 4.7 keV for HANARO and 5.3 keV for YG 5. This similarity implies that primary damage to the components of the commercial nuclear reactors should be well simulated by irradiation in the HANARO. Moreover, the application of the MD calculations corroborates this statement by comparing cascades simulation results.

The role of cytokines in seizures: interleukin (IL)-$1{\beta}$, IL-1Ra, IL-8, and IL-10

  • Youn, Youngah;Sung, In Kyung;Lee, In Goo
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.7
    • /
    • pp.271-274
    • /
    • 2013
  • Brain insults, including neurotrauma, infection, and perinatal injuries such as hypoxic ischemic encephalopathy, generate inflammation in the brain. These inflammatory cascades induce a wide spectrum of cytokines, which can cause neuron degeneration, have neurotoxic effects on brain tissue, and lead to the development of seizures, even if they are subclinical and occur at birth. Cytokines are secreted by the glial cells of the central nervous system and they function as immune system mediators. Cytokines can be proinflammatory or anti-inflammatory. Interleukin (IL)-$1{\beta}$ and IL-8 are proinflammatory cytokines that activate additional cytokine cascades and increase seizure susceptibility and organ damage, whereas IL-1 receptor antagonist and IL-10 act as anti-inflammatory cytokines that have protective and anticonvulsant effects. Therefore, the immune system and its associated inflammatory reactions appear to play an important role in brain damage. Whether cytokine release is relevant for the processes of epileptogenesis and antiepileptogenesis, and whether epileptogenesis could be prevented by immunomodulatory treatment should be addressed in future clinical studies. Furthermore, early detection of brain damage and early intervention are essential for the prevention of disease progression and further neurological complications. Therefore, cytokines might be useful as biomarkers for earlier detection of brain damage in high-risk infants.

Signal Transduction-related Gene Expression Analysis in MCF-7 followed by $\gamma$-radiation (MCF-7 세포주에서$\gamma$선에 의한 세포신호 전달 관련 유전자의 발현 양상의 분석)

  • 박지윤;황창일;박웅양;김진규;채영규
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.52-55
    • /
    • 2003
  • There is considerable evidence that ionizing radiation (IR) mediates checkpoint control, repair and cell death. In this study, we have used a high density microarray hybridization approach to characterize the transcriptional response of human breast carcinoma MCF-7 cell line to ${\gamma}$-radiation, such as 4 Gy 4 hr, 8 Gy 4 hr, and 8 Gy 12 hr. We found that exposure to ${\gamma}$-ray alters by at least a $log_2$ factor of 1.0 the expression of 115 known genes. Of the 66 genes affected by ${\gamma}$-radiation, 49 are down-regulated. In our results, the cellular response to irradiation includes induction of the c-jun and EGR1 early response genes. The present work has examined potential cytoplasmic signaling cascades that transduce IR-induced signals to the nucleus. 40S ribosomal protein s6 kinase modulates the activities of the mitogen activated protein kinase (MAPK) and c-Jun $NH_2$-terminal kinase (JNK1) cascades in human monocytic leukemia (U937/pREP4) cells. 14-3-3 family members are dimeric phosphoserine -binding proteins that participate in signal transduction and checkpoint control pathways.

Analysis of Molecular Pathways in Pancreatic Ductal Adenocarcinomas with a Bioinformatics Approach

  • Wang, Yan;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2561-2567
    • /
    • 2015
  • Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.

Nanoparticle Induced Oxidative Stress in Cancer Cells: Adding New Pieces to an Incomplete Jigsaw Puzzle

  • Nogueira, Daniele Rubert;Rolim, Clarice M. Bueno;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4739-4743
    • /
    • 2014
  • Nanotechnology is an emerging field with many promising applications in drug delivery systems. Because of outstanding developments in this field, rapidly increasing research is directed to the development of nanocarriers that may enhance the availability of drugs to the target sites. Substantial fraction of information has been added into the existing scientific literature focusing on the fact that nanoparticles usually generate reactive oxygen species to a greater extent than micro-sized particles. It is worth mentioning that oxidative stress regulates an array of cell signaling cascades that resulted in cancer cell damage. Accumulating experimental evidence over the years has shown that wide-ranging biological mechanisms are triggered by these NPs in cultured cells due to the unique properties of engineered nanoparticles. In this review, we have attempted to provide an overview of the signaling cascades that are activated by oxidative stress in cancer cells in response to different kinds of nanomaterials, including quantum dots, metallic and polymeric nanoparticles.

A Study on The Characteristics of The Inlet Boundary Condition of a Supersonic Turbine Cascade (초음속 터빈 캐스케이드 입구 경계조건의 특성에 관한 연구)

  • 신봉근;성영식;정수인;김귀순;이은석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.99-103
    • /
    • 2003
  • An analysis of the flow within supersonic turbine cascades is necessary to design and manufacture turbo-pump system. Because of the differences between the specified inlet boundary value and the computed inlet value caused by the far field inlet boundary condition, the computations at desired inlet conditions can not be achieved. So, this paper studied the problem occurred when far field inlet conditions were specified as inlet boundary conditions. And the numerical analyses using Fine Turbo, CFD Program, has been performed and compared with those of experiments when a converging-diverging nozzle or a linear nozzle was located in front of cascades instead of the far field inlet condition.

  • PDF

Src Protein Tyrosine Kinases in Stress Responses

  • Grishin, Anatoly;Corey, Seth J.
    • Animal cells and systems
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • A role of Src family protein Tyrosine kinases (SFK) as mediators of receptor-ligand initiated responses is well established. Well documented, but less well understood is the role of SFK in cellular reaction to stresses. Evidence from the wide variety of experimental systems indicates that SFK mediate responses to all major classes of stress, including oxidation, DNA damage, mechanical impacts, and protein denaturing. SFK may be activated by stresses directly or via regulatory circuits whose identity is not yet fully understood. Depending on the cell type and the nature of activating stimulus, SFK may activate known downstream signaling cascades leading to cell survival, proliferation, cytoskeletal rearrangement, and apoptosis; the identity of these cascades is discussed. As in the case of receptor-initiated signaling, roles of individual SFK in various stress response may be redundant or non-redundant. Although signals generated by different stresses are generally transduced via distinct SFK pathways, these pathways may overlap or exhibit crosstalk. In some cell types stress-induced activation of SFK promotes survival and inhibits apoptosis, whereas the opposite may be true for other cell types. Stress responses constitute a new and rapidly developing area of SFK-mediated signaling.