• Title/Summary/Keyword: Cascaded H-bridge rectifier (CHBR)

Search Result 2, Processing Time 0.016 seconds

A PI-based Control Scheme for Primary Cascaded H-Bridge Rectifier in Transformerless Traction Converters

  • Tao, Xing-Hua;Li, Yong-Dong;Sun, Min
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.360-365
    • /
    • 2012
  • Cascaded H-Bridge rectifier (CHBR) is a more attractive solution in traction application for its transformerless structure. Because of the currents of different cells are exactly the same one, it is a challenge job to regulate the voltages of cells with only one current controller. In this paper, a PI-based control scheme is presented to deal with the voltages balance issue in CHBR. To satisfy the demand of rectifier such as unity power factor and regulated output DC voltages, the proposed control scheme consists of two parts. One is for shaping the grid current waveform and regulating the sum of DC-link voltages of all the cells; the other one is for balancing DC-link voltages. The latter is more concerned in this paper and is discussed in detail especially. Simulations and experiments are carried on. The results verified the feasibility and effectiveness of the proposed scheme.

Sequence Pulse Modulation for Voltage Balance in a Cascaded H-Bridge Rectifier

  • Peng, Xu;He, Xiaoqiong;Han, Pengcheng;Lin, Xiaolan;Shu, Zeliang;Gao, Shibin
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.664-673
    • /
    • 2017
  • With the development of multilevel converters, cascaded single-phase H-bridge rectifiers (CHBRs) has become widely adopted in high-voltage high-power applications. In this study, sequence pulse modulation (SPM) is proposed for CHBRs. SPM is designed to balance the dc-link voltage and maintain the smooth changes of switch states. In contrast to phase disposition modulation, SPM balances the dc-link voltage even after removing the load of one submodule. The operation principle of SPM is deduced, and the unbalance degree of SPM is analyzed. All the proposed approaches are experimentally verified through a prototype of a four-module (nine-level) CHBR. Conclusions are drawn in accordance with the results of SPM and its imbalance degree analysis.