• 제목/요약/키워드: Cascade structure

검색결과 144건 처리시간 0.021초

1축 자세제어실험 장비를 이용한 SIMC 기반 쿼드로터 Cascade 제어기 적용에 관한 연구 (Application of SIMC Based Quad-rotor Cascade Control by Using 1-axis Attitude Control Test-bench)

  • 최윤성;유영진;정진석;강범수
    • 한국항행학회논문지
    • /
    • 제19권6호
    • /
    • pp.473-483
    • /
    • 2015
  • 본 논문에서는 1축 자세제어실험 장비를 제작하여 쿼드로터 형 무인항공기에 적용할 단일입력-단일출력 Cascade 제어기 실험을 수행하였다. 해당 장비는 두 개의 모터와 프로펠러에 의해 자세변화가 가능한 시소 형태로 구현하였고, 무게 추를 변경하여 회전축을 중심으로 상하 무게중심 이동이 가능하도록 제작하였다. 개발한 장비를 통해 Cascade 구조를 가지는 PID(각도)-PID(각속도) 제어기를 구성하여 실험을 수행하였으며, PID 이득의 조정을 용이하게 하는 SIMC 제어기 이득 조정 기법을 Cascade 제어에 접목하였다. 이를 위해 Matlab-Simulink 환경 하에 2차 시간 지연 모델을 구축하여 시스템 변수 추정을 수행하였다. 기존의 SIMC 조정 기법 적용 과정을 수행하여 그 특성을 파악하고, 적용 과정의 안정성 문제를 고려하여 수정된 방안을 제시하였으며, 이를 1축 자세제어실험 장비에 적용하여 기존의 과정과 수정된 과정을 비교 실험하였다.

선형 터빈 케스케이드 통로에서의 3차원 유동 특성 (Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage)

  • 차봉준;이상우;이대성
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

블레이드 앞전 3차원 형상 변형에 의한 터빈 캐스케이드 내의 이차유동 제어 (Secondary flow Control in the Turbine Cascade with the Three-Dimensional Modification of Blade Leading Edge)

  • 김정래;문영준;정진택
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1552-1558
    • /
    • 2002
  • The blade leading edge is modified to control the secondary flow generated in the turbine cascade with fence by intensifying the suction side branch of the horseshoe vortex. The incompressible Navier-Stokes equations are numerically solved with a high Reynolds number k-$\varepsilon$ turbulence closure model for investigating the vortical flows in the turbine cascade. The computational results of total pressure loss coefficients in the wake region are first compared with experiments for validation. The structure and strength of the passage vortex near the suction surface are examined by testing various geometrical parameters of the turbine blade leading edge.

Performance Evaluation of Cascade AOA Estimator Based on Uniform Circular Array

  • Kim, Tae-yun;Hwang, Suk-seung
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권2호
    • /
    • pp.65-70
    • /
    • 2020
  • For a wireless communication system, the angle-of-arrival (AOA) of the signal has a variety of applications. The signal AOA is estimated utilizing various antenna array structure such as Uniform Linear Array (ULA), Uniform Rectangular Array (URA), and Uniform Circular Array (UCA). In this paper, we introduce a cascade AOA estimation algorithm based on the UCA, which is consisted of CAPON and Beamspace MUSIC. CAPON is employed to estimate approximate AOA groups including multiple AOA signals and Beamspace MUSIC is employed to estimate detailed signal AOAs in the estimated AOA groups. In addition, we provide the computer simulation results for verifying and analyzing the performance of the cascade AOA estimator based on UCA.

다중 FBG를 이용한 OADM의 특성 및 향상에 관한 연구 (Improvement of OADM Characteristics Using MZI with Cascade FBG)

  • 장우순;정진호
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.131-135
    • /
    • 2003
  • WDM(Wavelength division multiplexing) light wave communication system requires MUX/DeMUX and optical filter OADM can be used to extract and add the specific wavelength channel from the transmission line. In this paper, we propose the OADM based on MZI and cascade FBG. It is able to minimize system and reduce sidelobe. So, we have considered MZI structure and 3dB coupler. Using the coupled mode theory. We also analyze out characteristics of OADM and experiment. From results obtained by experiment and computer. Simulation, the proposed OADM with cascade FBG works well. we hope that the obtained result in this paper con be used as the data to design the OADM with cascade FBG.

  • PDF

케스케이드 실험을 위한 벽면형상 설계에 관한 연구 (A Study of Wall Shape Design for Cascade Experiment)

  • 조종현;조봉수;김재실;조수용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.148-151
    • /
    • 2008
  • In a double-passage cascade apparatus, only two blades are installed in order to increase the accuracy of experimental result by applying bigger blade than the size of multi-blades on the same apparatus. However, this causes difficulties to make correct periodic condition. In this study, sidewalls are designed to meet periodic condition without removing the operating fluid or adjusting tail boards. Surface Mach number on the blade surface is applied to a responsible variable, and 12 design variables which are related with sidewall profile control are selected. A gradient based optimization is adopted for wall design and CFX-11 is used for the internal flow computation. The computed result shows that it could obtain the same flow structure by modifying only the sidewalls of the double-passage cascade apparatus.

  • PDF

점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석 (Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects)

  • 오세원;박웅;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석 (Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects)

  • 오세원;김동현;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

Incoherent Frequency 12-tupling Microwave Signal Generation Scheme Based on Cascade Modulators

  • Teng, Yichao;Zhang, Pin;Xu, Xin;Zhang, Baofu
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.466-476
    • /
    • 2021
  • Frequency-multiplication technology based on microwave photonic principles can be used to generate microwave and millimeter wave signals with a wide frequency tuning range. However, the existing cascaded external modulation frequency-tupling scheme needs to ensure the phase coherence of the modulated Radio Frequency (RF) signal, while the phase modulation directly limits the frequency tuning range of the external modulation frequency multiplication. In this paper, a novel approach for generating an incoherent frequency 12-tupling signal with cascade modulation is proposed. The structure of cascaded dual-parallel Mach-Zehnder modulators can generate a frequency 12-tupling signal. The proposed structure uses no filter or phase control of the RF driving signal. Microwave photonic frequency-tupling was realized under incoherent conditions. Software simulations and experiments validated the proposed structure and proved that it can generate frequency 12-tupling microwave signals under incoherent conditions. Both the frequency range and reliability of the frequency-tupling system has been improved by the proposed structure.

160% 피치의 유로에서 단일익형에 의한 캐스케이드 실험을 위한 벽면의 설계에 관한 연구 (A Study of Design of Sidewalls for Cascade Model with Single Blade Within a 160% Pitch Passage)

  • 조종현;김영철;안국영;조수용
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.527-536
    • /
    • 2009
  • 캐스케이드 실험장치에 한 개의 익형을 설치하여 캐스케이드 실험이 가능한 장치벽면의 설계를 수행하였다. 장치의 폭은 피치의 160% 넓이이다. 이 경우에 실험장치 내에 다수개의 블레이드를 설치하는 경우에 비하여 소형의 장치라도 실험의 정확성이 향상되는 장점이 있지만, 피치방향으로 주기조건을 맞추기가 어렵다. 본 연구에서는 주기조건이 얻어지도록 벽면의 형상설계를 내부유동장의 결과를 바탕으로 기울기기반과 유전자알고리즘의 방식을 사용하여 벽면을 설계하였다. 이를 위하여 목적함수는 캐스케이드 익형의 표면에서 얻어진 마하수를 적용하였으며, 실험장치의 형상 조정이 가능한 14개의 설계변수를 적용하였다. 유전자알고리즘에 의한 최적화 설계방식이 향상된 결과를 보여주었다.