• 제목/요약/키워드: Cascade Refrigerator System

검색결과 9건 처리시간 0.018초

Temperature Characteristics of Cascade Refrigeration System by Pressure Adjustment

  • Chung Han-Shik;Jeong Hyo-Min;Kim Yeong-Geun;Rahadiyan Lubi
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2303-2311
    • /
    • 2005
  • Super low temperature has many applications nowadays, from the chemical processing, automotives manufacturing, plastic recycling, etc. Considering of its wide application in the present and the future, study of the super-low temperature refrigeration system should be actively carried out. Super low state temperature can be achieved by using multi-stage refrigeration system. This paper present the development and testing of cascade refrigerator system for achieving super-low temperature. On this experiment, two different types of HCFCs refrigerants are utilized, R-22 and R-23 were applied for the high stage and the low-pressure stage respectively. The lowest temperature in the low-pressure evaporator that can be achieved by this cascade refrigeration system is down to $-85^{\circ}C$. This experiment is aimed to study the effect of inlet pressure of the low-pressure stage evaporator and low-pressure stage compressors inlet pressure characteristics to the overall temperature characteristics of cascade refrigeration system.

Roebuck 냉동기를 응용한 회전형 헬륨 재응축 장치 (Rotating helium-recondensing system using Roebuck refrigerator)

  • 정상권;이창규
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.464-471
    • /
    • 1999
  • This paper describes a design of the helium-recondensing system utilizing cascade Roebuck refrigerators. Superconducting generator or motor has the superconducting field winding in its rotor that should be continuously cooled by cryogen. Since liquid helium transfer from the stationary system to the rotor is problematic, cumbersome, and inefficient, the novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and expanded sequentially in cascade refrigerators until the helium is recondensed at 4.2K. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the key design parameters. The loss mechanisms are also explained to identify entropy generation that degrades the performance of the system.

  • PDF

반도체 식각공정을 위한 비가연성 혼합냉매 줄톰슨 냉동기 설계 (Design of Non-flammable Mixed Refrigerant Joule-Thomson Refrigerator for Semiconductor Etching Process)

  • 이천규;김진만;이정길
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.144-149
    • /
    • 2022
  • A cryogenic Mixed Refrigerant Joule-Thomson refrigeration cycle was designed to be applied to the semiconductor etching process with non-flammable constituents. 3-stage cascade refrigerator, single mixed refrigerant Joule-Thomson refrigerator, and 2-stage cascade type mixed refrigerant Joule-Thomson refrigerator are analyzed to figure out the coefficient of performance. Non-flammable mixture of argon(Ar), tetrafluoromethane(R14), trifluoromethane (R23) and octafluoropropane(R218) were utilized to analyze the refrigeration cycle efficiency. The designed refrigeration cycle was adapted to cool down the coolant of HFE7200(Ethoxy-nonafluorobutane, C4F9OC2H5) with certain constraints. Maximum coefficient of performance of the refrigeration system is obtained as 0.289 for the cooling temperature lower than -100℃. The detailed result of the coefficient of performance according to the mixture composition is discussed in this study.

Helium Recondensing System Utilizing Cascade Roebuck Refrigerators

  • Jeong, Sang-Kwon;Lee, Chang-Gyu;Jung, Je-Heon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권2호
    • /
    • pp.108-118
    • /
    • 2000
  • This paper describes a design of the helium-recondensing system utilizing cascade Roebuck refrigerators. Superconducting generator or motor has the superconducting field wind-ing in its rotor that should be continuously cooled by cryogen. Since liquid helium transfer from the stationary system to the rotor is problematic, cumbersome, and inefficient, the novel concept of a rotating helium-recondensing system is contrived. The vaporized cold helium inside the rotor is isothermally compressed by centrifugal force and expanded sequentially in cascade refrigerators until the helium is recondensed at 4.2 K. There is no helium coupling between the rotor and the stationary liquid helium storage. Thermodynamic analysis of the cascade refrigeration system is performed to determine the key design parameters. The loss mechanisms are explained to identify entropy generation that degrades the performance of the system.

  • PDF

액화질소 초저온과 이원냉동 초저온 냉열의 비교 실험적 연구 (A Study on the Cold Energy for Liquefied Nitrogen Gas and Cascade Refrigeration System)

  • 김철수;장현순;정효민;정한식
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.56-62
    • /
    • 2007
  • This paper represents the cold energy for liquefied nitrogen gas and cascade refrigerator. In this study, the vaporizer of liquefied nitrogen gas has the fin coil tube type with the dimension of inside diameter of 10mm and outside diameter of 12mm. Also, the total length of vaporizer is 20,000mm. The main experimental parameters are the mean velocity in duct and the supplied flow-rates of liquefied nitrogen gas. For the cascade refrigeration system, the refrigerants are ethane(R 170) in the high pressure stage and R 22 in the low pressure stage.

  • PDF

캐스케이드 냉동시스템과 2단 압축 1단 팽창식 냉동 시스템의 성능 비교 (Performance comparison of cascade refrigerator and two-stage compression refrigerator)

  • 손창효
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.625-631
    • /
    • 2014
  • $-30^{\circ}C{\sim}-50^{\circ}C$ 범위의 저온 증발온도를 얻기 위해서는 2단 압축 1단 팽창식 냉동 시스템이나 캐스케이드 냉동 시스템이 필요하다. 하지만 이러한 냉동시스템의 성능 비교에 대한 연구 결과는 대단히 부족한 실정이다. 본 논문은 R744-R404A용 캐스케이드 냉동시스템과 R404A용 2단 압축 1단 팽창식 냉동 시스템의 성능을 서로 비교한 것이다. $-30^{\circ}C{\sim}-50^{\circ}C$의 증발온도 범위에서 2단 압축 1단 팽창식 냉동시스템의 성능계수가 캐스케이드 냉동시스템 보다 약 36%~57% 정도 높다. 하지만, 2단 압축 1단 팽창식 냉동 시스템의 경우 증발온도와 압축효율 감소시에 성능계수의 변화가 커서 안정적이지 못하다. 특히, 압축효율 감소시에 성능계수가 크게 감소하는데, 이는 장기간 냉동 시스템의 사용시에 단점이 될 수 있다. 반면, R744-R404A용 캐스케이드 냉동 시스템은 자연냉매를 사용하여 친환경적이며, 고온과 저온 사이클에 사용되는 냉매의 적절한 선택에 의해서 다양한 온도영역에서 고효율 냉동 시스템을 구성할 수 있다. 위의 결과로부터, 성능과 환경적인 측면을 고려하여 용도에 따라 적합한 저온 냉동시스템을 선택하는 것이 좋으리라 판단된다.

익렬 분석 및 표면 돌기 형상을 이용한 냉장고 기계실 냉각용 고성능/저소음 축류팬 개발 (Development of high performance and low noise axial-flow fan for cooling machine room of refrigerator using airfoil-cascade analysis and surface ridge shape)

  • 최진호;유서윤;정철웅;김태훈;구준효
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.515-523
    • /
    • 2020
  • 본 연구의 목표는 냉장고 기계실 냉각용 축류팬을 대상으로 익렬 분석법과 표면 돌기 형상을 이용하여 유량과 소음 성능을 향상시키는 것이다. 먼저 기존 팬 시스템의 유동 및 소음 성능을 팬 성능 시험기와 무향실에서 실험적으로 평가하였다. 다음으로 전산유체역학과 Ffowcs-Williams and Hawkings(FW-H) 방정식을 연계한 수치해석을 이용하여 유량과 소음 성능을 예측하였으며 실험 결과와의 비교를 통해 그 유효성을 검증하였다. 검증된 수치해석기법을 기반으로 유량 성능을 향상시키기 위하여 기존 팬으로부터 추출된 익형들로 구성한 2차원 익렬의 유동 성능 분석을 수행하고 양항비를 최대화할 수 있는 피치각을 도출하였다. 최적 피치각이 적용된 축류팬의 수치해석을 실시하여 향상된 유량 성능을 확인하였다. 향상된 유량 성능을 바탕으로 추가적인 소음 성능을 개선하기 위해 표면 돌기 형상을 팬 압력면에 적용한 팬 날개를 도출하였으며 수치적으로 유동 소음의 저감을 확인하였다. 마지막으로 유량 및 소음 성능 개선 축류팬을 제작하여 검증 실험을 통해 유량 및 소음 성능이 향상됨을 확인하였다.

Effectiveness analysis of pre-cooling methods on hydrogen liquefaction process

  • Yang, Yejun;Park, Taejin;Kwon, Dohoon;Jin, Lingxue;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권3호
    • /
    • pp.20-24
    • /
    • 2020
  • The purpose of this analytic study is to design and examine an efficient hydrogen liquefaction cycle by using a pre-cooler. The liquefaction cycle is primarily comprised of a pre-cooler and a refrigerator. The fed hydrogen gas is cooled down from ambient temperature (300 K) to the pre-cooling coolant temperature (either 77 K or 120 K approximately) through the pre-cooler. There are two pre-cooling methods: a single pre-coolant pre-cooler and a cascade pre-cooler which uses two levels of pre-coolants. After heat exchanging with the pre-cooler, the hydrogen gas is further cooled and finally liquefied through the refrigerator. The working fluids of the potential pre-cooling cycle are selected as liquid nitrogen and liquefied natural gas. A commercial software Aspen HYSYS is utilized to perform the numerical simulation of the proposed liquefaction cycle. Efficiency is compared with respect to the various conditions of the heat exchanging part of the pre-cooler. The analysis results show that the cascade method is more efficient, and the heat exchanging part of the pre-coolers should have specific UA ratios to maximize both spatial and energy efficiencies. This paper presents the quantitative performance of the pre-cooler in the hydrogen liquefaction cycle in detail, which shall be useful for designing an energy-efficient liquefaction system.

설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제28권6호
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.