• Title/Summary/Keyword: Cascade Controller

Search Result 79, Processing Time 0.022 seconds

Design of Optimized Fuzzy Cascade controller Based on Partical Swarm Optimization for Ball & Beam System (볼빔 시스템에 대한 입자 군집 최적화를 이용한 최적 퍼지 직렬형 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2322-2329
    • /
    • 2008
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of particle swarm optimization(PSO) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling facrors) of each fuzzy controller using PSO. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on PSO, is presented in comparison with the conventional PD cascade controller based on serial genetic alogritms.

Design of Optimized Fuzzy PD Cascade Controller Based on Parallel Genetic Algorithms (병렬유전자 알고리즘 기반 최적 Fuzzy PD Cascade 제어기의 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.329-336
    • /
    • 2009
  • In this paper, we propose the design of an optimized fuzzy cascade controller for rotary inverted pendulum system by means of Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) which is a kind of parallel genetic algorithms. The rotary inverted pendulum system is the system for controlling the inclination of pendulum axis through the adjustment of rotating arm. The control objective of the system is to control the position of rotating arm and to make the pendulum maintain the unstable equilibrium point of vertical position. To control rotary inverted pendulum system, we designs the fuzzy cascade controller scheme consisted of two fuzzy controllers and optimizes the parameters of the designed controller by means of HFCGA. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy cascade controller leads to superb performance in comparison with the conventional LQR controller as well as HFCGA based PD cascade controller.

The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms (최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로)

  • Kim, Wook-Dong;Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Design of Optimized Fuzzy Cascade Controller Based on HFCGA for Ball & Beam System (볼빔 시스템에 대한 계층적 공정 경쟁 유전자 알고리즘을 이용한 최적 퍼지 Cascade 제어기 설계)

  • Jang, Han-Jong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.391-398
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. The displacement change the position of ball leads to the change of the angle of the beam which determines the position angle of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. We introduce the fuzzy cascade controller scheme which consists of the outer(1st) controller and the inner(2nd) controller as two cascaded fuzzy controllers, and auto-tune the control parameters(scaling factors) of each fuzzy controller using HFCGA. The inner controller controls the position of lever arm which corresponds to the position angle of a servo motor and the outer controller decides the set-point value of the inner controller. HFCGA is a kind of parallel genetic algorithms(PGAs), and helps alleviate the premature convergence being generated in conventional genetic algorithms (GAs). For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

Design of Optimized Cascade Controller by Hierarchical Fair Competition-based Genetic Algorithms for Rotary Inverted Pendulum System (계층적 공정 경쟁 유전자 알고리즘을 이용한 회전형 역 진자 시스템의 최적 캐스케이드 제어기 설계)

  • Jung, Seung-Hyun;Jang, Han-Jong;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.104-106
    • /
    • 2007
  • In this paper, we propose an approach to design of optimized Cascade controller for Rotary Inverted Pendulum system using Hierarchical Fair Competition-based Genetic Algorithm(HFCGA). GAs may get trapped in a sub-optimal region of the search space thus becoming unable to find better quality solutions, especially for very large search space. The Parallel Genetic Algorithms(PGA) are developed with the aid of global search and retard premature convergence. HFCGA is a kind of multi-populations of PGA. In this paper, we design optimized Cascade controller by HFCGA for Rotary Inverted Pendulum system that is nonlinear and unstable. Cascade controller comprise two feedback loop, parameters of controller optimize using HFCGA. Then designed controller evaluate by apply to the real plant.

  • PDF

Model Identification and Design of Optimized IMC-Cascade Controller (모델 동정과 최적의 IMC-Cascade 제어기 설계)

  • Cho, Joon-Ho;Cho, Hyun-Seob;Hwang, Hyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6027-6033
    • /
    • 2012
  • In this paper, we proposed to model identification in frequency domain using relay feedback and Design of internal model controller(IMC) with Cascade controller. The parameters of controller in the inner loop are determined to minimize the integral of time multiplied by the absolute value of error (ITAE) value of performance Index. The controller of outer loop and parameters of IMC-PID controller can be obtain using identified model. The model identification is considered that it is the transient response and the steady-state response through the use of nyquist curve. Simulation examples are given to show the better performance of the proposed method than conventional methods.

Development of Anti-windup Techniques for Cascade Control System (다단제어용 안티 와인드업 기술 개발)

  • Bae, Jeong Eun;Kim, Kyeong Hoon;Chu, Syng Chul;Heo, Jaepil;Lim, Sanghun;Sung, Su Whan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.430-437
    • /
    • 2020
  • In this research, the anti-windup techniques for the cascade control system are newly developed. Cascade control system has an additional internal feedback control loop to reject disturbances better than the conventional control system. Remarkable difference between the conventional single-loop control system and the cascade control system is the interaction that the controller output saturation of the secondary control loop strongly affects the integral action of the primary control loop. In industry, local back calculation anti-windup method has been mainly used for each controller without considering the interaction between the two controllers. But it cannot eliminate the integral-windup of the primary controller originated from the saturation of the secondary controller output. To solve the problem, the two anti-windup techniques of the cascade conditional integration and the cascade back calculation are proposed in this research by extending the local anti-windup techniques for the single-loop control system to the cascade control system. Simulation confirmed that the proposed methods can effectively remove the integral windup of the primary controller caused by the saturation of the secondary controller output and show good control performances for various types of processes and controllers. If the reliability of the proposed methods is proved through the applications to real processes in the future, they would highly contribute to improving the control performances of the cascade control system in industry.

Fuzzy-based PID Controller for Cascade Process Control

  • Tummaruckwattana, S.;Pannil, P.;Chaikla, A.;Tirasesth, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.268-271
    • /
    • 2004
  • This paper describes the development of a fuzzy logic control based on PID controller to improve the performances of the control system using conventional PID controller for the cascade process control systems. The structure of the proposed control system consists of two fuzzy-based PID controllers. One is used to eliminate the input disturbances of the inner loop and the other is used to regulate output response of the outer loop. The fuzzy PID design is derived from the linear-time continuous function of the conventional PID controller. The performance of the proposed controller is verified by MATLAB/SIMULINK simulation. Results of simulation studies demonstrates the outstanding of the control system using fuzzy-based PID controller in terms of reduced overshoot and fast response compared with the conventional PID controller.

  • PDF

Auto-tuning of boiler drum level controller in Thermal Power Plant (화력 발전소 보일러 드럼수위 제어기의 자동 동조)

  • Lee, J.H.;Joo, H.Y.;Byun, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2584-2586
    • /
    • 2000
  • A drum level control is one of the most important control systems in thermal power plant. The control objective of drum level of boiler in thermal power plant is to maintain drum level at constant set-point regardless of disturbance such as main steam flow. The implemented drum level controller is the cascade PI controller. The important factor in drum level controller is the parameters of two PI controllers. The tuning of PI controller parameter is tedious and time-consuming job. In this paper, the relay feedback Ziegler - Nichols tuning method extended to auto-tune cascade PI drum level controller. Finally, the simulation result using boiler model in Power Plant shows the validity of auto-tuned cascade PI controller.

  • PDF

Design of Optimized Interval Type-2 Fuzzy Controller and Its Application (최적 Interval Type-2 퍼지 제어기 설계 및 응용)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1624-1632
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized Interval Type-2 fuzzy controller. The fixed MF design of type-1 based FLC leads to the difficulty of rule-based control design for representing the linguistically uncertain expression. In the Type-2 FLC as the expanded type of Type-1 FLC, we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. Type-2 FLC has a robust characteristic in the unknown system with unspecific noise when compared with Type-1 FLC. Through computer simulation as well as practical experiment, we compare their performance by applying both the optimized Type-1 and Type-2 fuzzy cascade controllers to ball and beam system. To evaluate each controller performance, we consider controller characteristic parameters such as maximum overshoot, delay time, rise time, settling time and steady-state error.