• Title/Summary/Keyword: Carter-brugirard saliva

Search Result 2, Processing Time 0.019 seconds

Surface Protection Obtained by Anodic Oxidation of New Ti-Ta-Zr Alloy

  • Vasilescu, C.;Drob, S.I.;Calderon Moreno, J.M.;Drob, P.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • A new 80Ti-15Ta-5Zr wt% alloy surface was protected by anodic oxidation in phosphoric acid solution. The protective oxide layer (TiO2, ZrO2 and Ta suboxides and thickness of 15.5 nm) incorporated $PO{_4}^{3-}$ ions from the solution, according to high resolution XPS spectra. The AFM analysis determined a high roughness with SEM detected pores (20 - 50 nm). The electrochemical studies of bare and anodically oxidized Ti-15Ta-5Zr alloy in Carter-Brugirard saliva of different pH values and saliva with 0.05M NaF, pointed to a nobler surface for the protected alloy, with a thicker electrodeposited oxide layer acting as a barrier against aggressive ions. The oxidized alloy significantly decreased corrosion current densities and total quantity of ions released into the oral environment in comparison with the bare one, at higher polarisation resistance and protective capacity of the electrodeposited layer. The impedance data revealed a bi-layered oxidation film formed by: a dense, compact, barrier layer in contact with the metallic substrate, decreasing the potential gradient across the metal/oxide layer/solution interface, reducing the anodic dissolution and a more permissive, porous layer in contact with the electrolyte. The open circuit potential for protected alloy shifted to nobler values, with thickening of the oxidation film signifying long-term protection.

Oxide Nanolayers Grown on New Ternary Ti Based Alloy Surface by Galvanic Anodizing-Characteristics and Anticorrosive Properties

  • Calderon Moreno, J.M.;Drob, P.;Vasilescu, C.;Drob, S.I.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.257-264
    • /
    • 2017
  • Film of new Ti-15Zr-5Nb alloy formed during galvanic anodizing in orthophosphoric acid solution was characterized by optical microscope, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and Raman micro-spectroscopy. Its anticorrosive properties were determined by electrochemical techniques. The film had a layer with nanotube-like porosity with diameters in 500-1000 nm range. The nano layer contained significant amounts of P and O as well as alloying element. Additionally, Raman micro-spectroscopy identified oxygen as oxygen ion in $TiO_2$ anatase and phosphorous as $P_2O_7{^{4-}}$ ion in phosphotitanate compound. All potentiodynamic polarization curves in artificial Carter-Brugirard saliva with pH values (pH= 3.96, 7.84, and 9.11) depending on the addition of 0.05M NaF revealed nobler behavior of anodized alloy and higher polarization resistance indicating the film is thicker and more compact nanolayer. Lower corrosion rates of the anodized alloy reduced toxicity due to less released ions into saliva. Bigger curvature radii in Nyquist plot and higher phase angle in Bode plot for the anodized alloy ascertain a thicker, more protective, insulating nanolayer existing on the anodized alloy. Additionally, ESI results indicate anodized film consists of an inner, compact, barrier, layer and an outer, less protective, porous layer.