• Title/Summary/Keyword: Carrying capacity model

Search Result 342, Processing Time 0.034 seconds

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

Development of the Hydraulic Performance Graph Model and its Application (수리거동곡선 모형의 개발 및 적용)

  • Seo, Yongwon;Seo, Il Won;Shin, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1373-1382
    • /
    • 2014
  • This paper presents a hydraulic performance graph model in which the flow carrying capacity of a channel system was determined by accounting the interacting backwater effect among channel reaches and incoming lateral flow. The method utilizes hydraulic performance graphs (HPGs), and the method is applied to a natural channel Nakdong River to examine its applicability. This research shows that estimation results using HPG are close to records from the stage station and the results from a widely-accepted model, HEC-RAS. Assuming that a water level gage site is ungaged, water level estimations by HPGs compared with observation show that with a flood event, the HPGs underestimate in the water level ascension phase, but in the recession phase they overestimate results. The accuracy of estimation with HPGs was greatly improved by considering the time difference of flooding between the observation and estimation locations.

Influence of Lateral Bracing on Lateral Buckling of Short I-Beams Under Repeated Loadings (반복하중을 받는 짧은 I형 보의 횡좌굴에 대한 횡브레이싱의 영향에 관한 고찰)

  • 이상갑
    • Computational Structural Engineering
    • /
    • v.5 no.1
    • /
    • pp.109-118
    • /
    • 1992
  • Lateral bracing has long been used in design practice to enhance the carrying capacity of the lateral buckling of the beam. Many factors, critically important to lateral bracing performance, do not appear in design formulas. Some of these factors are discussed in this study for the application to short I - beams under repeated loadings through parametric studies with an analytical model : the brace location along the length of the beam, the height of the bracing above the shear center of the beam, and the strength and stiffness of the brace. The parametric studies are carried out using a propped cantilever arrangement, and also using a geometrically (fully) nonlinear beam model for the brace as well as the beam to capture the system buckling. An idealized bracing system is configured to restrain lateral motion, but not rotation. A multiaxial cyclic plasticity model is also implemented to better represent cyclic metal plasticity in conjunction with a consistent return mapping algorithm.

  • PDF

Finite Element Analysis of the Complex Behavior and Load Bearing Characteristics of a Foundation Pile Connector (유한요소해석을 이용한 복합거동 연결체의 하중지지 특성)

  • Shin, Hee-Soo;Kim, Ki-Sung;Hong, Seung Seo;Kim, YoungSeok;Ahn, Jun-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.451-460
    • /
    • 2019
  • In this study, a complex behavior connector is proposed to overcome the problems that may occur when small pile pipe and micro pile is used as a friction pile concept in the lower foundation of an oil sand plant where a piloti foundation is used. The individual settlement and heaving of piles were connected in one group to allow the composite behavior. This study performed to analyze the load carrying capacity to identify a complex behavior. In addition, the shape of the composite behavior connector was examined to apply the advantages of pile-group and piled raft foundations to oil sand plants. A scale model was constructed to measure the behavior of the load. The stability and weakness of the device were selected to determine the shape of the connector using the scale model testing.

Sustainability Evaluation of Shellfish Production in Gamak Bay Based on Systems Ecology 3. Energy Modeling of Shellfish Aquaculture Production in Gamak Bay (시스템 생태학적 접근법에 의한 가막만 패류생산의 지속성 평가 3. 가막만 패류 양식업의 에너지 모델링)

  • Oh, Hyun-Taik;Lee, Suk-Mo;Lee, Won-Chan;Jung, Rae-Hong;Hong, Suk-Jin;Kim, Nam-Kook;Tilburg, Charles
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.969-980
    • /
    • 2008
  • This research was performed to simulate shellfish production systems and sales in Gamak Bay, South Korea. To study the way the shellfish system generates maxima, a numerical model was developed to simulate the model under a control and a number of different scenarios. The program calculates the EMERGY flows by multiplying the flows of energy and materials by the appropriate solar transformity. In this study, an energy systems model was built to simulate the variation of sustainability for oyster aquaculture. The results of the simulation based on 2005 data that as oyster production yield slightly increases, money and assets increase to a steady state. When the program is run control simulation, the system reaches carrying capacity after 8 years. The simulation of models with price of purchased inputs increased with 3.5% inflation rate per year showed maximum benefit of shellfish production occurs after 6 years but amounts are less than control simulation, and then decreases slightly in money and yield results. The results with 3.5% inflation and increase of oyster price annually showed steady and slightly increase of money and yield.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

Development of Rehabilitation and Management Techniques for Old Water Distribution Systems (기존 상수도 노후관망의 개량 및 관리 기법의 개발)

  • 김중훈;김종우
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.197-205
    • /
    • 1996
  • Flow carrying capacity of water distribution systems is getting reduced by deterioration of pipes in the systems. The objective of this study is to develop a managerial decision-making model for the rehabilitation of water distribution systems with a minimum cost. The decisions made by the model also satisfy the requirements for the discharge and pressure at demanding nodes in the system. The replacement cost, pipe break repair cost, and pumping cost are considered in the economic evaluation of the decision along with the break ratio and interest ratio to determine the optimal replacement time for each pipe. Then, the hydraulic integrity of the water distribution system is checked for the decision by a pipe network simulator, KYPIPE, if the discharge and pressure requirements, the decision made for the optimal replacement time is revised until the requirements are satisfied. The model is applied to an existing water distribution system, the Metropolita Water Supply Project (1st Phase). The result shows that the decisions for the replacement time determined by the economix analysis are accepted as optimal and the hydraulic integrity of the system is in good condition.

  • PDF

Ecosystem Modelling for Improvement Summer Water Quality of Jinhae Bay in 2003 (2003년 하계 진해만 수질 개선을 위한 생태계 모델링)

  • Hong, Sok-Jin;Lee, Won-Chan;Jung, Rea-Hong;Oh, Hyun-Tek;Jang, Ju-Hyung;Goo, Jun-Ho;Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.2 s.29
    • /
    • pp.103-110
    • /
    • 2007
  • This study estirmted the appropriate pollutant load reduction from point sources in Jinhae Bay, Korea, using an eco system model. The results of COD values in the inner part of the bay obtained through the simulation by ecosystem model were greater than 3.0mg/L, and exceeded the limits of Korean Coastal Water Quality Grade III. Engineering countermeasures to reduce the $70\sim90%$ of all land based pollution load or organic and inorganic material loads from point sources by more than 50% were required to keep the COD levels below 2 mg/L. The reduction loads is 5,632kg/day of COD, 481kg/day of DIP and 7,991 kg/day of DIN in case of the reduction of both the organic and nutrients. The estimated environmental currying capacity of that case is 13,112kg/day of COD, 206kg/day of DIP and 3,425kg/day of DIN to keep the COD levels below 2mg/L.

  • PDF

Analysis of Probability and Extended Life Cycle of Strengthened Bridge Deck (성능향상된 교량 바닥판의 확률론적 해석 및 수명연장 분석)

  • Sim, Jong-Sung;Oh, Hong-Seob;Choi, Jang-Whan;Kim, Eon-Kyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.635-642
    • /
    • 2003
  • Although the strengthening effect of deteriorated concrete bridge decks has been studied by various authors, most researches are focused on the experimental works on the pulsating loading in laboratory in spite of deterioration of deck caused by moving vehicle loads. In this research, a theoretical live load model that was proposed to reflect an effect of moving vehicle loads is formulated from a statistical approach on the measurement of real traffic loads for various time periodsin Korea. Fatigue life and strengthening effect of strengthened bridge decks strengthened with either Carbon Fiber Sheet or Grid typed Carbon Fiber Polymer Plastic by the probabilistic and the reliability analyses are assessed. As a results, secondary bridge deck (DB18) strengthened with FRP ensures a sufficient fatigue resistance against the increased traffic loads as well as load carrying capacity in life cycle.

A Study on the Ultimate Strength Behavior according to Modeling Range at the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park Jo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.137-141
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF