• 제목/요약/키워드: Carrier recombination

검색결과 163건 처리시간 0.025초

Simulation Study of Front-Lit Versus Back-Lit Si Solar Cells

  • Choe, Kwang Su
    • 한국재료학회지
    • /
    • 제28권1호
    • /
    • pp.38-42
    • /
    • 2018
  • Continuous efforts are being made to improve the efficiency of Si solar cells, which is the prevailing technology at this time. As opposed to the standard front-lit solar cell design, the back-lit design suffers no shading loss because all the metal electrodes are placed on one side close to the pn junction, which is referred to as the front side, and the incoming light enters the denuded back side. In this study, a systematic comparison between the two designs was conducted by means of computer simulation. Medici, a two-dimensional semiconductor device simulation tool, was utilized for this purpose. The $0.6{\mu}m$ wavelength, the peak value for the AM-1.5 illumination, was chosen for the incident photons, and the minority-carrier recombination lifetime (${\tau}$), a key indicator of the Si substrate quality, was the main variable in the simulation on a p-type $150{\mu}m$ thick Si substrate. Qualitatively, minority-carrier recombination affected the short circuit current (Isc) but not the opencircuit voltage (Voc). The latter was most affected by series resistance associated with the electrode locations. Quantitatively, when ${\tau}{\leq}500{\mu}s$, the simulation yielded the solar cell power outputs of $20.7mW{\cdot}cm^{-2}$ and $18.6mW{\cdot}cm^{-2}$, respectively, for the front-lit and back-lit cells, a reasonable 10 % difference. However, when ${\tau}$ < $500{\mu}s$, the difference was 20 % or more, making the back-lit design less than competitive. We concluded that the back-lit design, despite its inherent benefits, is not suitable for a broad range of Si solar cells but may only be applicable in the high-end cells where float-zone (FZ) or magnetic Czochralski (MCZ) Si crystals of the highest quality are used as the substrate.

다결정 실리콘 태양전지 구조 최적화에 관한 연구 (A Study on the Optimization of Polysilicon Solar Cell Structure)

  • 이재형;정학기;정동수;이종인
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.702-705
    • /
    • 2011
  • 고효율 다결정 태양전지 제작의 방향을 제시하기 위해 PC1D 프로그램을 이용하여 전, 후면 재결합 속도, 소수 캐리어 확산거리, 접합깊이, 에미터 층 면저항, 후면 전계층이 미치는 영향을 조사하였다. 최적화된 전지 파라미터는 후면 재결합 속도 1000 cm/sec, 베이스 층에서의 소수 캐리어 확산거리 50 [${\mu}m$], 전면 재결합 속도 100 [cm/sec], 에미터 층 면저항 $100{\Omega}/\Box$, 후면 전계층 두께 및 도핑 농도는 각각 0.5 [${\mu}m$]와 $5{\times}10^{19}\;cm^{-3}$로 조사되었다. 특히 19.8% 이상의 변환효율을 얻기 위해서는 베이스층의 확산거리가 가장 중요한 파라미터임을 알 수 있었다.

  • PDF

Carrier Conducting Path in the Crystalline Silicon Solar Cells

  • Choi, Pyungho;Kim, Sangsub;Choi, Byoungdeog
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.457-457
    • /
    • 2013
  • Current-voltage (I-V) measurements of crystalline silicon solar cells was conducted under dark conditions with the temperature range of 260 K~350 K. Using the calculation method, we extracted the crucial factors of ideality factor (n) and activation energy (Ea) to investigate the carrier conducting path in the space charge region (SCR) and the quasi-neutral region (QNR). Values of n were decreased with increasing temperature in both SCR and QNR. We also conformed that the value of Ea of SCR was larger than that of QNR about 0.4 eV. The temperature dependence of n indicates that the carrier conducting path is dominated by carrier recombination-generation in the SCR region than in the QNR region.

  • PDF

Efficient Organic Light-emitting Diodes by Insertion a Thin Lithium Fluoride Layer with Conventional Structure

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • 제7권2호
    • /
    • pp.26-30
    • /
    • 2006
  • Insertion of a thin lithium fluoride (TLF) layer between an emitting layer (EML) and an electron transporting layer has resumed in the developement of a highly efficient and bright organic light-emitting diode (OLED). Comparing with the performance of the device as a function of position with the TLF layer in tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$, we propose the optimal position for the TLF layer in the stacked structure. The fabricated OLED shows a luminance efficiency of more than 20 cd/A, a power efficiency of 12 Im/W (at 20 mA/$cm^{2}$), and a luminance of more than 22 000 cd/$m^{2}$ (at 100 mA/$cm^{2}$), respectively. We suggest that the enhanced performance of the OLED is probably attributed to the improvement of carrier balance to achieve a high level of recombination efficiency in an EML.

광전자소자를 위한 Piezo-Phototronic 효과의 연구 동향 (Recent Advances in the Piezo-Phototronic Effect for Optoelectronics)

  • 신경식;김성수;김도환;윤규철;김상우
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.173-179
    • /
    • 2013
  • Wurtzite nanomaterials, such as ZnO, GaN, and InN, have become a subject of great scientific and technological interest as they simultaneously have piezoelectric and semiconductor properties. In particular, the piezoelectric potential (piezopotential) created by dynamic straining in the nanowires drives a transient flow of current in the external load, converting mechanical energy into electricity. Further, the piezopotential can be used to control the carrier generation, transport, separation, and/or recombination at the metal-semiconductor junction or p-n junction, which is called the piezophototronic effect. This paper reviews the recent advances on the piezophototronic effect to better use the piezophototronic effect to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices, such as photon detectors, solar cells and LEDs. This paper also discusses several research and design studies that have improved the output performance of optoelectronic devices.

Low-Molecular-Weight White Organic-Light-Emitting-Devices using Direct Color Mixing Method

  • Lee, Sung-Soo;Song, Tae-Joon;Ko, Myung-Soo;Cho, Sung-Min
    • Journal of Information Display
    • /
    • 제3권2호
    • /
    • pp.6-12
    • /
    • 2002
  • In order to achieve white emission from organic light emitting devices (OLEDs), five distinct structures were fabricated and tested. The white emission was obtained using two different color-emitting materials (yellow from rubrene-doped $Alq_3$ and blue from DPVBi) with or without a carrier-blocking layer. For enhancing the red emission, two types of devices with three-color emitting materials were fabricated. The white emission, close to the CIE coordinate of (0.3,0.3), was achieved by using two blocking layers as well that as without a blocking layer. This paper covers the subject of controlling the location of exciton recombination zone. It has been found that there is a trade-off in that the devices with three color emitting layers do not show as much luminescence efficiency compared to those with two color emitting layers, but rather, show distinct red emission in the resultant emission spectra. The highest power efficiency was measured to be 1.15lm/W at 2,000 $cd/m^2$ for a structure with two color-emitting layers.

전자차단층 도입을 통한 전체 용액공정 기반의 역구조 InP 양자점 발광다이오드의 성능 향상 (Improved Performance of All-Solution-Processed Inverted InP Quantum Dot Light-Emitting Diodes Using Electron Blocking Layer)

  • 노희재;이경은;배예윤;이재엽;노정균
    • 센서학회지
    • /
    • 제33권4호
    • /
    • pp.224-229
    • /
    • 2024
  • Quantum dot light-emitting diodes (QD-LEDs) are emerging as next-generation displays owing to their high color purity, wide color gamut, and solution processability. Enhancing the efficiency of QD-LEDs involves preventing non-radiative recombination mechanisms, such as Auger and interfacial recombination. Generally, ZnO serves as the electron transport layer, which is known for its higher mobility compared to that of organic semiconductors and can lead to excessive electron injection. Some of the injected electrons pass through the quantum dot emissive layer and undergo non-radiative recombination near or within the organic hole transport layer (HTL), resulting in HTL degradation. Therefore, the implementation of electron blocking layers (EBLs) is essential; however, studies on all-solution-processed inverted InP QD-LEDs are limited. In this study, poly(9-vinylcarbazole) (PVK) is introduced as an EBL to mitigate HTL degradation and enhance the emission efficiency of inverted InP QD-LEDs. Using a single-carrier device, PVK was confirmed to effectively inhibit electron overflow into the HTL, even at extremely low thicknesses. The optimization of the PVK thickness also ensured minimal disruption of the hole-injection properties. Consequently, a 1.5-fold increase in the maximum luminance was achieved in the all-solution-processed inverted InP QD-LEDs with the EBL.

양자우물 레이저의 캐리어 포획 및 탈출에 따른 광 이득과 광 미분 이득 고찰 (Analysis on the Gain and the Differential Gain due to the Carrier Capture/Escape Process in a Quantum Well Laser)

  • 방성만;정재용;서정하
    • 대한전자공학회논문지TE
    • /
    • 제37권5호
    • /
    • pp.17-27
    • /
    • 2000
  • SCH 양자우물 레이저에서 수치적 모델을 이용하여 캐리어의 양자우물 subband 점유에 따른 광 이득, 광 미분 이득과 재결합 전류를 계산하고, 이를 해석적 캐리어 포획 및 탈출 모델과 연계하여 양자우물 주입 전류와 SCH bulk 캐리어의 관계를 도출하였다. 이를 토대로 SCH 영역과 양자우물의 캐리어 비율과 전류 비율을 얻고, 이에 따른 광 이득과 광 미분 이득의 변화를 고찰하였다.

  • PDF

Temperature Dependence of Efficiency Droop in GaN-based Blue Light-emitting Diodes from 20 to 80℃

  • Ryu, Guen-Hwan;Seo, Dong-Joo;Ryu, Han-Youl
    • Current Optics and Photonics
    • /
    • 제2권5호
    • /
    • pp.468-473
    • /
    • 2018
  • We investigate the temperature dependence of efficiency droop in InGaN/GaN multiple-quantum-well (MQW) blue light-emitting diodes (LEDs) in the temperature range from 20 to $80^{\circ}C$. When the external quantum efficiency (EQE) and the wall-plug efficiency (WPE) of the LED sample were measured as injection current and temperature varied, the droop of EQE and WPE was found to be reduced with increasing temperature. As the temperature increased from 20 to $80^{\circ}C$, the droop ratio of EQE was decreased from 16% to 14%. This reduction in efficiency droop with temperature can be interpreted by a temperature-dependent carrier distribution in the MQWs. When the carrier distribution and radiative recombination rate in MQWs were simulated and compared for different temperatures, the carrier distribution was found to become increasingly homogeneous as the temperature increased, which is believed to partly contribute to the reduction in efficiency droop with increasing temperature.

Observation of Carrier Multiplication via Internal Quantum Efficiency Exceeding 100% in PbS QDs Monolayer Solar Cells

  • Park, So Yeon;Chung, Hyun Suk;Han, Gill Sang;Su, Jang Ji;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.467.1-467.1
    • /
    • 2014
  • Quantum dots (QD) solar cells has received considerable attention due to their potential of improving the overall conversion efficiency by harvesting excess energy via multiple excitons generation (MEG). Although there have been many reports which show MEG phenomena by using optical measurement of quantum dots themselves, carrier multiplication in real QD photovoltaic devices has been sparsely reported due to difficulty in dissociation of excitons and charge collection. In this reports, heterojunction QD solar cells composed of PbS QD monolayer on highly crystalline $TiO_2$ thin films were fabricated by using Langmuir-Blodgett deposition technique to significantly reduce charge recombination at the interfaces between each QD. The PbS CQDs monolayer was characterized by using UV-vis, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The internal quantum efficiency (IQE) for the monolayer QD solar cells was obtained by measurement of external quantum efficiency and determining light absorption efficiency of active layer. Carrier multiplication was observed by measuring IQE greater than 100% over threshold photon energy. Our findings demonstrate that monolayer QD solar cell structure is potentially capable of realizing highly efficient solar cells based on carrier multiplication.

  • PDF