• Title/Summary/Keyword: Carrier recombination

Search Result 163, Processing Time 0.024 seconds

A Study on the Electrical Characteristic Analysis of c-Si Solar Cell Diodes

  • Choi, Pyung-Ho;Kim, Hyo-Jung;Baek, Do-Hyun;Choi, Byoung-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • A study on the electrical characteristic analysis of solar cell diodes under experimental conditions of varying temperature and frequency has been conducted. From the current-voltage (I-V) measurements, at the room temperature, we obtained the ideality factor (n) for Space Charge Region (SCR) and Quasi-Neutral Region (QNR) of 3.02 and 1.76, respectively. Characteristics showed that the value of n (at SCR) decreases with rising temperature and n (at QNR) increases with the same conditions. These are due to not only the sharply increased SCR current flow but the activated carrier recombination in the bulk region caused by defects such as contamination, dangling bonds. In addition, from the I-V measurements implemented to confirm the junction uniformity of cells, the average current dispersion was 40.87% and 10.59% at the region of SCR and QNR, respectively. These phenomena were caused by the pyramidal textured junction structure formed to improve the light absorption on the device's front surface, and these affect to the total diode current flow. These defect and textured junction structure will be causes that solar cell diodes have non-ideal electrical characteristics compared with general p-n junction diodes. Also, through the capacitance-voltage (C-V) measurements under the frequency of 180 kHz, we confirmed that the value of built-in potential is 0.63 V.

Process Temperature Dependence of Al2O3 Film Deposited by Thermal ALD as a Passivation Layer for c-Si Solar Cells

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.581-588
    • /
    • 2013
  • This paper presents a study of the process temperature dependence of $Al_2O_3$ film grown by thermal atomic layer deposition (ALD) as a passivation layer in the crystalline Si (c-Si) solar cells. The deposition rate of $Al_2O_3$ film maintained almost the same until $250^{\circ}C$, but decreased from $300^{\circ}C$. $Al_2O_3$ film deposited at $250^{\circ}C$ was found to have the highest negative fixed oxide charge density ($Q_f$) due to its O-rich condition and low hydroxyl group (-OH) density. After post-metallization annealing (PMA), $Al_2O_3$ film deposited at $250^{\circ}C$ had the lowest slow and fast interface trap density. Actually, $Al_2O_3$ film deposited at $250^{\circ}C$ showed the best passivation effects, that is, the highest excess carrier lifetime (${\tau}_{PCD}$) and lowest surface recombination velocity ($S_{eff}$) than other conditions. Therefore, $Al_2O_3$ film deposited at $250^{\circ}C$ exhibited excellent chemical and field-effect passivation properties for p-type c-Si solar cells.

Doping Controlled Emitter with a Transparent Conductor for Crystalline Si Solar Cells

  • Kim, Min-Geon;Kim, Hyeon-Yeop;Choe, U-Jin;Lee, Jun-Sin;Kim, Jun-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.590-590
    • /
    • 2012
  • A transparent conducting oxide (TCO) layer was applied in crystalline Si (c-Si) solar cells without use of the conventional SiNx-coating. A high quality indium-tin-oxide (ITO) layer was directly deposited on an emitter layer of a Si wafer. Three different types of emitters were formed by controlling the phosphorous diffusion condition. A light-doped emitter forming a thinner emitter junction showed an improved photoconversion efficiency of 14.1% comparing to 13.2% of a heavy-doped emitter. This was induced by lower recombination within a narrower depletion region of the light-doped emitter. In the aspect of light management, the intermediate refractive index of ITO is effective to reduce the light reflection leading the enhanced carrier generation in a Si absorber. For the electrical aspect, the ITO layer serves as an efficient electrical conductor and thus relieves the burden of high contact resistance of the light-doped emitter. Additionally, the ITO works as a buffer layer of Ag and Si and certainly prevents the shunting problem of Ag penetration into Si emitter region. It discusses an efficient design scheme of TCO-embedded emitter Si solar cells.

  • PDF

Properties of Silicon Nitride Deposited by RF-PECVD for C-Si solar cell (결정질 실리콘 태양전지를 위한 실리콘 질화막의 특성)

  • Park, Je-Jun;Kim, Jin-Kuk;Song, Hee-Eun;Kang, Min-Gu;Kang, Gi-Hwan;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.11-17
    • /
    • 2013
  • Silicon nitride($SiN_x:H$) deposited by radio frequency plasma enhanced chemical vapor deposition(RF-PECVD) is commonly used for anti-reflection coating and passivation in crystalline silicon solar cell fabrication. In this paper, characteristics of the deposited silicon nitride was studied with change of working pressure, deposition temperature, gas ratio of $NH_3$ and $SiH_4$, and RF power during deposition. The deposition rate, refractive index and effective lifetime were analyzed. The (100) p-type silicon wafers with one-side polished, $660-690{\mu}m$, and resistivity $1-10{\Omega}{\cdot}cm$ were used. As a result, when the working pressure increased, the deposition rate of SiNx was increased while the effective life time for the $SiN_x$-deposited wafer was decreased. The result regarding deposition temperature, gas ratio and RF power changes would be explained in detail below. In this paper, the optimized condition in silicon nitride deposition for silicon solar cell was obtained as 1.0 Torr for the working pressure, $400^{\circ}C$ for deposition temperature, 500 W for RF power and 0.88 for $NH_3/SiH_4$ gas ratio. The silicon nitride layer deposited in this condition showed the effective life time of > $1400{\mu}s$ and the surface recombination rate of 25 cm/s. The crystalline silicon solar cell fabricated with this SiNx coating showed 18.1% conversion efficiency.

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

Characterization of EFG Si Solar Cells

  • Park, S.H.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.1-10
    • /
    • 1996
  • Solar cells made of the edge-defined film-fed growth Si are characterized using current-voltage, surface photovoltage, electron beam induced current, electron microprobe, scanning electron microscopy, and electron backscattering. The weak temperature dependence of the I-V curves in the EFG solar cells is due to a voltage variable shunt resistance giving higher diode ideality factors than the ideal one. The voltage variable shunt resistance is modeled by a modified recombination mechanism which includes carrier tunneling to distributed impurity energy states in the band gap within the space-charge region. The junction integrity and the substrate quality are characterized simultaneously by combining I-V and surface photovoltage (SPV) measurements. The diode ideality factors and the surface photovoltages characterize the junction integrity while the SPV diffusion lengths characterizes the substrate quality. Most of the measured samples show the voltage variable shunt resistance although how serious it is depends on the solar cell efficiency. The voltage variable shunt resistance is understood as one of the most important factors of the degradation of EFG solar cells.

  • PDF

Preparation of Nanoflake Bi2MoO6 Photocatalyst Using CO(NH2)2 as Structure Orientation and Its Visible Light Degradation of Tetracycline Hydrochloride

  • Hu, Pengwei;Zheng, Dewen;Xian, Yuxi;Hu, Xianhai;Zhang, Qian;Wang, Shanyu;Li, Mingjun;Cheng, Congliang;Liu, Jin;Wang, Ping
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.325-330
    • /
    • 2021
  • Bi2MoO6 (BMO) via the structure-directing role of CO(NH2)2 is successfully prepared via a facile solvothermal route. The structure, morphology, and photocatalytic performance of the nanoflake BMO are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), fluorescence spectrum analysis (PL), UV-vis spectroscopy (UV-vis) and electrochemical test. SEM images show that the size of nanoflake BMO is about 50 ~ 200 nm. PL and electrochemical analysis show that the nanoflake BMO has a lower recombination rate of photogenerated carriers than particle BMO. The photocatalytic degradation of tetracycline hydrochloride (TC) by nanoflake BMO under visible light is investigated. The results show that the nanoflake BMO-3 has the highest degradation efficiency under visible light, and the degradation efficiency reached 75 % within 120 min, attributed to the unique hierarchical structure, efficient carrier separation and sufficient free radicals to generate active center synergies. The photocatalytic reaction mechanism of TC degradation on the nanoflake BMO is proposed.

Improvement in Performance of Cu2ZnSn(S,Se)4 Absorber Layer with Fine Temperature Control in Rapid Thermal Annealing System (Cu2ZnSn(S,Se)4(CZTSSe) 흡수층의 급속 열처리 공정 온도 미세 조절을 통한 특성 향상)

  • Kim, Dong Myeong;Jang, Jun Sung;Karade, Vijay Chandrakant;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.619-625
    • /
    • 2021
  • Cu2ZnSn(S,Se)4 (CZTSSe) based thin-film solar cells have attracted growing attention because of their earth-abundant and non-toxic elements. However, because of their large open-circuit voltage (Voc)-deficit, CZTSSe solar cells exhibit poor device performance compared to well-established Cu(In,Ga)(S,Se)2 (CIGS) and CdTe based solar cells. One of the main causes of this large Voc-deficit is poor absorber properties for example, high band tailing properties, defects, secondary phases, carrier recombination, etc. In particular, the fabrication of absorbers using physical methods results in poor surface morphology, such as pin-holes and voids. To overcome this problem and form large and homogeneous CZTSSe grains, CZTSSe based absorber layers are prepared by a sputtering technique with different RTA conditions. The temperature is varied from 510 ℃ to 540 ℃ during the rapid thermal annealing (RTA) process. Further, CZTSSe thin films are examined with X-ray diffraction, X-ray fluorescence, Raman spectroscopy, IPCE, Energy dispersive spectroscopy and Scanning electron microscopy techniques. The present work shows that Cu-based secondary phase formation can be suppressed in the CZTSSe absorber layer at an optimum RTA condition.

Synthesis of Ag-doped black ZnO nano-catalysts for the utilization of visible-light (가시광선 활용을 위한 Ag 도핑 흑색 ZnO 나노 광촉매 합성)

  • Ui-Jun Kim;Hye-Min Kim;Seung-Hyo Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.208-218
    • /
    • 2023
  • Photocatalysts are advanced materials which accelerate the photoreaction by providing ordinary reactions with other pathways. The catalysts have various advantages, such as low-cost, low operating temperature and pressure, and long-term use. They are applied to environmental and energy field, including the air and water purification, water splitting for hydrogen production, sterilization and self-cleaning surfaces. However, commercial photocatalysts only absorb ultraviolet light between 100 and 400 nm of wavelength which comprises only 5% in sunlight due to the wide band gap. In addition, rapid recombination of electron-hole pairs reduces the photocatalytic performance. Recently, studies on blackening photocatalysts by laser, thermal, and plasma treatments have been conducted to enhance the absorption of visible light and photocatalytic activity. The disordered structures could yield mid-gap states and vacancies could cause charge carrier trapping. Herein, liquid phase plasma (LPP) is adopted to synthesize Ag-doped black ZnO for the utilization of visible-light. The physical and chemical characteristics of the synthesized photocatalysts are analyzed by SEM/EDS, XRD, XPS and the optical properties of them are investigated using UV/Vis DRS and PL analyses. Lastly, the photocatalytic activity was evaluated using methylene blue as a pollutant.

Air-Processed Efficient Perovskite Solar Cell via Antisolvent Additive Engineering (안티솔벤트 첨가제 공정에 의한 대기 중 고효율 페로브스카이트 태양전지 제작)

  • Se-Yeong Baek;Seok-Soon Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2024
  • Although antisolvent-assisted crystallization is one of the promising processes to produce high-quality perovskite films, general antisolvents such as chlorobenzene (CB) have toxic and volatile properties. In addition, CB is not suitable to control the crystallization of perovskite in the atmospheric air. In this work, isopropyl acetate (IA) is used as an eco-friendly antisolvent to demonstrate air-processed perovskite solar cells, and ethyl-4-cyanocinnamate (E4CN) with a cyano group, carbonyl group, and aromatic ring is introduced in IA to improve the performance and stability of devices. Defects at the surface and grain boundaries of the perovskite layer, such as un-coordinated Pb2+ and iodine, can be decreased resulting from the interaction of E4CN and perovskite, and thus reduced recombination and enhanced carrier transport can be expected. As a result, the perovskite device with E4CN achieves a high maximum power conversion efficiency (PCE) of 18.89% and outstanding stability, maintaining 60% of the initial efficiency for 300 h in the air without any encapsulation.