• Title/Summary/Keyword: Carrier Modulation

Search Result 509, Processing Time 0.025 seconds

Pseudo-Randomized Frequency Carrier Modulation Scheme with Improved Harmonics Spectra Spreading Effects (고조파 스펙트럼 확산효과를 개선한 준 랜덤 주파수 캐리어 변조기법)

  • Kim, Jong-Nam;Jung, Young-Gook;Lim, Young-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.64-70
    • /
    • 2008
  • In case that conventional PRC(Pseudo-Randomized Frequency Carrier) modulation scheme is applied to a three-phase HBML(H-Bridge Multi-Level Inverter), the dominant harmonics spectra appear at twice switching frequency. In this paper, the dominant harmonics spectra spreading effect of the conventional PRC scheme was improved by using three stage MUXs(Multiplexers) and two triangular carriers with fixed frequency which has mutual relation of the twice frequency. To confirm the validity of the improved PRC scheme, the experiment were performed on a 1.5[kw] three-phase HBML based induction motor drives. And, the harmonics spectra of the conventional and improved PRC schemes are compared and discussed.

Carrier Phase-Shift PWM to Reduce Common-Mode Voltage for Three-Level T-Type NPC Inverters

  • Nguyen, Tuyen D.;Phan, Dzung Quoc;Dao, Dat Ngoc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1197-1207
    • /
    • 2014
  • Common-mode voltage (CMV) causes overvoltage stress to winding insulation and damages AC motors. CMV with high dv/dt causes leakage currents, which create noise problems for equipment installed near the converter. This study proposes a new pulse-width modulation (PWM) strategy for three-level T-type NPC inverters. This strategy substantially eliminates CMV. The principle for selecting suitable triangle carrier signals for the three-level T-type NPC is described. The proposed method can mitigate the peak value of CMV by 50% compared with the phase disposition pulse-width modulation method. Furthermore, the proposed method exhibits better harmonic spectrum and lower root mean square value for the CMV than those of the reduced-CMV method on the basis of the phase opposition disposition PWM scheme with modulation index higher than 0.5. The proposed modulation can easily be implemented using software without any additional hardware modifications. Both simulation and experimental results demonstrate that the proposed carrier phase-shift PWM method has good output waveform performance and reduces CMV.

Novel Carrier-Based PWM Strategy of a Three-Level NPC Voltage Source Converter without Low-Frequency Voltage Oscillation in the Neutral Point

  • Li, Ning;Wang, Yue;Lei, Wanjun;Niu, Ruigen;Wang, Zhao'an
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.531-540
    • /
    • 2014
  • A novel carrier-based PWM (CBPWM) strategy of a three-level NPC converter is proposed in this paper. The novel strategy can eliminate the low-frequency neutral point (NP) voltage oscillation under the entire modulation index and full power factor. The basic principle of the novel strategy is introduced. The internal modulation wave relationship between the novel CBPWM strategy and traditional SPWM strategy is also studied. All 64 modulation wave solutions of the CBPWM strategy are derived. Furthermore, the proposed CBPWM strategy is compared with traditional SPWM strategy regarding the output phase voltage THD characteristics, DC voltage utilization ratio, and device switching losses. Comparison results show that the proposed strategy does not cause NP voltage oscillation. As a result, no low-frequency harmonics occur on output line-to-line voltage and phase current. The novel strategy also has higher DC voltage utilization ratio (15.47% higher than that of SPWM strategy), whereas it causes larger device switching losses (4/3 times of SPWM strategy). The effectiveness of the proposed modulation strategy is verified by simulation and experiment results.

A Hybrid Modulation Strategy with Reduced Switching Losses and Neutral Point Potential Balance for Three-Level NPC Inverter

  • Jiang, Weidong;Gao, Yan;Wang, Jinping;Wang, Lei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.738-750
    • /
    • 2017
  • In this paper, carrier-based pulse width modulation (CBPWM), space vector PWM (SVPWM) and reduced switching losses PWM (RSLPWM) for the three-level neutral point clamped (NPC) inverter are introduced. In the case of the neutral point (NP) potential (NPP) offset, an asymmetric disposition PWM (ASPDPWM) strategy is proposed, which can output PWM sequences correctly and suppress the lower order harmonics of the inverter effectively. An NPP balance strategy based on carrier based PWM (CBPWM) is analyzed. A hybrid modulation strategy combining RSLPWM and the NPP balance based on CBPWM is proposed, and hysteresis control is adopted to switch between the two modulation strategies. An experimental prototype of the three-level NPC inverter is built. The effectiveness of the hybrid modulation is verified with a resistance-inductance load and a permanent magnetic synchronous motor (PMSM) load, respectively. The experimental results show that reduced switching losses and an acceptable NPP can be effectively achieved in the hybrid modulation strategy.

Laboratory study on the modulation evolution of nonlinear wave trains

  • Dong, G.H.;Ma, Y.X.;Zhang, W.;Ma, X.Z.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.189-203
    • /
    • 2012
  • New experiments focusing on the evolution characteristics of nonlinear wave trains were conducted in a large wave flume. A series of wave trains with added sidebands, varying initial steepness, perturbed amplitudes and frequencies, were physically generated in a long wave flume. The experimental results show that the increasing wave steepness, increases the speed of sidebands growth. To study the frequency and phase modulation, the Morlet wavelet transform is adopted to extract the instantaneous frequency of wave trains and the phase functions of each wave component. From the instantaneous frequency, there are local frequency downshifts, even an effective frequency downshift was not observed. The frequency modulation increases with an increase in amplitude modulation, and abrupt changes of instantaneous frequencies occur at the peak modulation. The wrapped phase functions show that in the early stage of the modulation, the phase of the upper sideband first diverges from that of the carrier waves. However, at the later stage, the discrepancy phase from the carrier wave transformed to the lower sideband. The phase deviations appear in the front of the envelope's peaks. Furthermore, the evolution of the instantaneous frequency exhibits an approximate recurrence-type for the experiment with large imposed sidebands, even when the corresponding recurrence is not observed in the Fourier spectrum.

An Equivalent Carrier-based Implementation of a Modified 24-Sector SVPWM Strategy for Asymmetrical Dual Stator Induction Machines

  • Wang, Kun;You, Xiaojie;Wang, Chenchen
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1336-1345
    • /
    • 2016
  • A modified space vector pulse width modulation (SVPWM) strategy based on vector space decomposition and its equivalent carrier-based PWM realization are proposed in this paper, which is suitable for six-phase asymmetrical dual stator induction machines (DSIMs). A DSIM is composed of two sets of symmetrical three-phase stator windings spatially shifted by 30 electrical degrees and a squirrel-cage type rotor. The proposed SVPWM technique can reduce torque ripples and suppress the harmonic currents flowing in the stator windings. Above all, the equivalent relationship between the proposed SVPWM technique and the carrier-based PWM technique has been demonstrated, which allows for easy implementation by a digital signal processor (DSP). Simulation and experimental results, carried out separately on a simulation system and a 3.0 kW DSIM prototype test bench, are presented and discussed.

The Simple Harmonic Analysis Method of the Multi-Carrier PWM Techniques by Using the Output Phase Voltage in the Multi-Level Inverter (출력 상전압을 이용한 멀티-캐리어 PWM 기법의 간단한 고조파 분석 방법)

  • 김준성;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.352-360
    • /
    • 2003
  • This paper deals with a simple method in order to analyze and compare the harmonic characteristics in the multi-level inverter. Generally, the magnitude of harmonic components becomes different according to the multi-carrier Pulse Width Modulation(PWM) techniques, the modulation index($M_i$) and the switching frequency The previous papers analyzed the harmonic characteristics from the viewpoint of the space voltage vector. Hence, the calculation of the harmonic vector becomes more difficult and complex in 4-level or over 5-level. However, the proposed method has reduced an amount of calculation and simplified the process of it, using the relationship between the reference voltage and the output phase voltage to the load neutral point. It is applied to the 5-level cascade inverter and the harmonic characteristics for each multi-carrier PWM technique are compared through the simulation.

Half-Cycle-Waveform-Inversed Single-Carrier Seven-level Sinusoidal Modulation

  • Wu, Fengjiang;Sun, Bo;Zhang, Lujie;Sun, Li
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.86-93
    • /
    • 2013
  • A half-cycle-waveform inversion based three reference modulations seven-level SPWM (TRM-SPWM) scheme with one carrier is proposed in this paper. To keep the same comparison logics for the modulations and carrier during the negative half cycle and the positive one for the modulations, in the negative half cycle of the modulations, the DC offsets related to the amplitude of the carrier are set on the three modulations, respectively. The seven-level SPWM waveform with dead time thereby is implemented with only one Digital Signal Processor (DSP) without any other attached logic circuit. The basis principle of the proposed TRM-SPWM is analyzed in detail, and the frequency spectrums of the conventional and the proposed schemes are derived and compared with each other through simulation. The DSP based implementation is presented and detailed experimental waveforms verify the accuracy and feasibility of the proposed TRM-SPWM scheme.

Sparse Index Multiple Access for Multi-Carrier Systems with Precoding

  • Choi, Jinho
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.439-445
    • /
    • 2016
  • In this paper, we consider subcarrier-index modulation (SIM) for precoded orthogonal frequency division multiplexing (OFDM) with a few activated subcarriers per user and its generalization to multi-carrier multiple access systems. The resulting multiple access is called sparse index multiple access (SIMA). SIMA can be considered as a combination of multi-carrier code division multiple access (MC-CDMA) and SIM. Thus, SIMA is able to exploit a path diversity gain by (random) spreading over multiple carriers as MC-CDMA. To detect multiple users' signals, a low-complexity detection method is proposed by exploiting the notion of compressive sensing (CS). The derived low-complexity detection method is based on the orthogonal matching pursuit (OMP) algorithm, which is one of greedy algorithms used to estimate sparse signals in CS. From simulation results, we can observe that SIMA can perform better than MC-CDMA when the ratio of the number of users to the number of multi-carrier is low.

A Theoretical Approach on the Turbulence Intensity of the Carrier Fluid in Two-phase Particle-laden Flows (고체입자가 부상된 이상유동에서 운반유체의 난류강도에 대한 해석적 접근)

  • Kim, Se-Yun;Lee, Chung-Gu;Lee, Kye-Bock
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2037-2042
    • /
    • 2003
  • The purpose of this research is to develop the model of turbulence modulation due to the presence of particles in various types of particle-laden flows. Available experimental data were surveyed and the dependence of turbulence modulation of carrier-phase on particle size, concentration and particle Reynolds number were examined. This study takes into account the effect of wake produced by particle, the drag between phases and the velocity gradient in the wake to estimate the production of turbulence. The model of turbulence modulation using the mixing length theory under the assumption of equilibrium flow is proposed. Numerical results show that the model is successful in predicting the characteristics of the particle-laden flow in various conditions both qualitatively and quantitatively.

  • PDF