• Title/Summary/Keyword: Cardiac imaging techniques

Search Result 38, Processing Time 0.025 seconds

Dynamic Cardiac Magnetic Resonance Fingerprinting During Vasoactive Breathing Maneuvers: First Results

  • Luuk H.G.A. Hopman;Elizabeth Hillier;Yuchi Liu;Jesse Hamilton;Kady Fischer;Nicole Seiberlich;Matthias G. Friedrich
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.2
    • /
    • pp.71-82
    • /
    • 2023
  • BACKGROUND: Cardiac magnetic resonance fingerprinting (cMRF) enables simultaneous mapping of myocardial T1 and T2 with very short acquisition times. Breathing maneuvers have been utilized as a vasoactive stress test to dynamically characterize myocardial tissue in vivo. We tested the feasibility of sequential, rapid cMRF acquisitions during breathing maneuvers to quantify myocardial T1 and T2 changes. METHODS: We measured T1 and T2 values using conventional T1 and T2-mapping techniques (modified look locker inversion [MOLLI] and T2-prepared balanced-steady state free precession), and a 15 heartbeat (15-hb) and rapid 5-hb cMRF sequence in a phantom and in 9 healthy volunteers. The cMRF5-hb sequence was also used to dynamically assess T1 and T2 changes over the course of a vasoactive combined breathing maneuver. RESULTS: In healthy volunteers, the mean myocardial T1 of the different mapping methodologies were: MOLLI 1,224 ± 81 ms, cMRF15-hb 1,359 ± 97 ms, and cMRF5-hb 1,357 ± 76 ms. The mean myocardial T2 measured with the conventional mapping technique was 41.7 ± 6.7 ms, while for cMRF15-hb 29.6 ± 5.8 ms and cMRF5-hb 30.5 ± 5.8 ms. T2 was reduced with vasoconstriction (post-hyperventilation compared to a baseline resting state) (30.15 ± 1.53 ms vs. 27.99 ± 2.07 ms, p = 0.02), while T1 did not change with hyperventilation. During the vasodilatory breath-hold, no significant change of myocardial T1 and T2 was observed. CONCLUSIONS: cMRF5-hb enables simultaneous mapping of myocardial T1 and T2, and may be used to track dynamic changes of myocardial T1 and T2 during vasoactive combined breathing maneuvers.

Quantitative gated myocardial perfusion SPECT (정량적 게이트 심근관류 SPECT)

  • Ahn, Byeong-Cheol
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.4
    • /
    • pp.207-218
    • /
    • 2003
  • Myocardial perfusion imaging has been increasingly used to provide prognostic data and guidance on the choice of appropriate management of patients with known or suspected coronary artery disease. The electrocardiogram gated myocardial SPECT program is corning into wide use with an advent of $^{99m}Tc-labeled$ tracers and an improvement of SPECT machines. The gated technique permits measurement of important cardiac prognostic indicators without any further discomforts or radiation burden in patients underwent standard myocardial perfusion SPECT. In addition, gated study significantly improves diagnostic yield by reducing the number of borderline interpretations and could find myocardial stunning and viable myocardium. Gated single photon emission computed tomography (SPECT) imaging allows the automated calculation of end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and the assessment of regional wall motion and thickening, and it have dramatically improved assessment of coronary artery disease in routine nuclear practice. This allows the simultaneous assessment of both perfusion and function within the same acquisition, and serves as a cost-effective technique for providing more diagnostic data with fewer diagnostic tests. Because the diagnostic and prognostic power derived from knowledge of left ventricular function can be added to that provided by assessing myocardial perfusion, gated SPECT imaging has rapidly gained widespread acceptance and is now used on a routine clinical basis in a growing number of laboratories, including South Korea. The gated SPECT technique for measurement of left ventricular parameters has been validated against a variety of well established techniques. In this work, overview of gated myocardial perfusion SPECT focus on functional parameters is presented.

Experiencing cardiac arrest during surgical exploration in hemodynamically stable patients with multiple stab wounds, including lower extremity in Korea: a case report

  • Jung Rae Cho;Dae Sung Ma
    • Journal of Trauma and Injury
    • /
    • v.37 no.2
    • /
    • pp.166-169
    • /
    • 2024
  • Stab wounds, particularly those affecting multiple body regions, present considerable challenges in trauma care. This report describes a case of sustained self-inflicted stab injuries to the abdomen and thighs of a 23-year-old male patient. Although the patient's vital signs were stable and bleeding was minimal from thigh wounds without overt signs of vascular injury, the patient experienced a sudden, profound hemorrhage from the right thigh, leading to cardiac arrest. Successful resuscitation was followed by surgical repair of a right superficial femoral arterial injury accompanying a resuscitative endovascular balloon of the aorta. Subsequent lower extremity computed tomography angiography revealed no additional vascular abnormalities. The patient was discharged in stable condition on the 12th postoperative day. This case underscores the unpredictability of stab wound trajectories and the potential for hidden vascular injuries, even in the absence of immediate life-threatening signs. It also emphasizes the critical role of advanced imaging modalities, such as computed tomography angiography, in identifying concealed injuries, and the importance of strategic intraoperative techniques, including resuscitative endovascular balloon occlusion of the aorta, in achieving favorable patient outcomes.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

Computed Tomography of the Left Atrium and Left Atrial Appendage: A Pictorial Essay on the Anatomy, Normal Variants, and Pathology (좌심방과 좌심방이의 전산화단층촬영 소견: 해부학, 정상변이 및 질환에 관한 임상화보 )

  • Minji Song; Sung Jin Kim;Hyun Jung Koo;Moon Young Kim;Jin Young Yoo
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.2
    • /
    • pp.272-289
    • /
    • 2020
  • Current advances in CT techniques allow thorough evaluation of the beating heart. The strengths of cardiac CT relative to echocardiography and magnetic resonance imaging are its high availability in most institutions, rapid production of high-quality images, and outstanding delineation of the anatomy. For many normal variants and pathologic conditions, such as thrombi, masses, and congenital abnormalities of the left atrium, CT findings are sufficient to make a presumptive diagnosis. Assessments of the left atrium and left atrial appendage are particularly important for the management of atrial fibrillation, as various catheter-based procedures are aimed at the mechanical and electrical isolation of these structures. CT offers information crucial to a successful catheter-based procedure or surgery. Therefore, a comprehensive review of the geometry (shape, size, and relative position), along with various CT imaging features of pathologic states, should be provided in radiology reports to be of clinical value.

Three-Dimensional Printed Model of Partial Anomalous Pulmonary Venous Return with Biatrial Connection (양측 심방 연결을 형성하는 부분 폐정맥 환류 이상의 3D 프린팅 모델)

  • Myoung Kyoung Kim;Sung Mok Kim;Eun Kyoung Kim;Sung-A Chang;Tae-Gook Jun;Yeon Hyeon Choe
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.6
    • /
    • pp.1523-1528
    • /
    • 2020
  • Partial anomalous pulmonary venous return (PAPVR) is a rare congenital cardiac anomaly that can be difficult to detect and often remains undiagnosed. PAPVR is diagnosed using non-invasive imaging techniques such as echocardiography, CT, and MRI. Image data are reviewed on a 2-dimensional (D) monitor, which may not facilitate a good understanding of the complex 3D heart structure. In recent years, 3D printing technology, which allows the creation of physical cardiac models using source image datasets obtained from cardiac CT or MRI, has been increasingly used in the medical field. We report a case involving a 3D-printed model of PAPVR with a biatrial connection. This model demonstrated separate drainages of the right upper and middle pulmonary veins into the lower superior vena cava (SVC) and the junction between the SVC and the right atrium, respectively, with biatrial communication through the right middle pulmonary vein.

Right ventricular failure in congenital heart disease

  • Cho, Young Kuk;Ma, Jae Sook
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.3
    • /
    • pp.101-106
    • /
    • 2013
  • Despite developments in surgical techniques and other interventions, right ventricular (RV) failure remains an important clinical problem in several congenital heart diseases (CHD). RV function is one of the most important predictors of mortality and morbidity in patients with CHD. RV failure is a progressive disorder that begins with myocardial injury or stress, neurohormonal activation, cytokine activation, altered gene expression, and ventricular remodeling. Pressure-overload RV failure caused by RV outflow tract obstruction after total correction of tetralogy of Fallot, pulmonary stenosis, atrial switch operation for transposition of the great arteries, congenitally corrected transposition of the great arteries, and systemic RV failure after the Fontan operation. Volume-overload RV failure may be caused by atrial septal defect, pulmonary regurgitation, or tricuspid regurgitation. Although the measurement of RV function is difficult because of many reasons, the right ventricle can be evaluated using both imaging and functional modalities. In clinical practice, echocardiography is the primary mode for the evaluation of RV structure and function. Cardiac magnetic resonance imaging is increasingly used for evaluating RV structure and function. A comprehensive evaluation of RV function may lead to early and optimal management of RV failure in patients with CHD.

Beyond Coronary CT Angiography: CT Fractional Flow Reserve and Perfusion (전산화단층촬영 관상동맥조영술: 분획혈류예비력과 심근관류 영상)

  • Moon Young Kim;Dong Hyun Yang;Ki Seok Choo;Whal Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.3-27
    • /
    • 2022
  • Cardiac CT has been proven to provide diagnostic and prognostic evaluation of coronary artery disease for cardiovascular risk stratification and treatment decision-making based on rapid technological development and various research evidence. Coronary CT angiography has emerged as a gateway test for coronary artery disease that can reduce invasive angiography due to its high negative predictive value, but the diagnostic specificity is relatively low. However, coronary CT angiography is likely to overcome its limitations through functional evaluation to identify the hemodynamic significance of coronary artery disease by analyzing myocardial perfusion and fractional flow reserve through cardiac CT. Recently, studies have been actively conducted to incorporate artificial intelligence to make this more objective and reproducible. In this review, functional imaging techniques of cardiac computerized tomography are explored.

Magnetic Resonance Angiographic Evaluation as a Screening Test for Patients who are Scheduled for Cardiac Surgery (심장수술 대상자에서 선별 검사로서 두경부 MRA)

  • Suh, Jong-Hui;Choi, Si-Young;Kim, Yong-Hwan
    • Journal of Chest Surgery
    • /
    • v.41 no.6
    • /
    • pp.718-723
    • /
    • 2008
  • Background: The advances in surgical techniques, anesthesia management, perfusion methodology and postoperative intensive care have markedly decreased the mortality and cardiac morbidity of patients who undergo heart surgery over the past 2 decades. Nevertheless, it is well recognized that cardiac surgery carries a substantial risk for central nervous system complications. This study was conducted to evaluate the prevalence of subclinical cerebrovascular lesions in the head and neck by performing magnetic resonance angiography (MRA), and we investigated the clinical course of patients who had abnormal lesion seen on head and neck MRA. Material and Method: The subjects were 107 patients (71 men and 36 women ranging in age from 21 to 83 years) who were scheduled for cardiac surgery under nonemergency conditions between October 2005 and June 2008. Informed consent was obtained before the MRA. The carotid arteries, intracranial arteries and brain parenchyme were examined for subclinical cerebrovascular lesions by performing MRA. We reviewed the patients' medical records and MR findings to evaluate the prevalence of neurologically high risk patients and their clinical course. Result: The overall prevalence of neurologically high risk patients was 15.7% (17 patients). Among these patients, 11 patients had ischemic heart disease and 6 patients had valvular heart disease. Only 2 patients had a history of cerebrovascular disease. The clinical courses of 14 patients (13.1%) were changed according to their MRI findings. Conclusion: The prevalence of subclinical cerebrovascular disease in patients who were scheduled for cardiac surgery was higher than was expected. MR angiography was of value to identify these patients.

Scintigraphic Assessment of Myocardial Viability (신티그라피에 의한 심근생존능 평가)

  • Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.2
    • /
    • pp.155-160
    • /
    • 1993
  • The identification of viable myocardium in patients with coronary artery disease and left ventricular dysfunction is an issue of increasing clinical relavance in the current era of myocardial revascularization. There are at least two forms of reversible myocardial dysfunction. Early reperfusion does not always lead to immediate functional improvement; rather, the return of contractility in tissue salvaged by reperfusion is delayed for hours, days or even weeks, a phenomenon that has been termed "stunned myocardium". Some patients with coronary artery disease show myocardial dysfunction at rest which are associated with reduced perfusion, and which disappear after revascularization; this phenomenon has been termed "hibernating myocardium". Recently, cardiac imaging techniques that evaluate myocardial viability on the basis of perfusion-contraction mismatch and inotropic reserve have gained substantial popularity and clinical success. This review focus on the application of $^{201}TI$ and $^{99m}Tc-MIBI$ to address myocardial viability in patients with hibernating and stunned myocardium. It is clear that 4-hour redistribution images of $^{201}TI$ underestimate ischemia and overestimate scar. Delayed imaging and reinjection imaging have been developed for the assessment of viability. Among many protocols suggested, stress-redistribution-reinjection imaging gained most popularity. Although $^{99m}Tc-MIBI$ could identify myocardial viability, $^{201}TI$ reinjection technique was regarded as superior to it. In conclusion, $^{201}TI$ stress, 4-hr rest redistribution, and reinjection imaging technique may be the most preferable method for evaluation of myocardial viability.

  • PDF