• Title/Summary/Keyword: Cardiac CT Metal Artifact Reduction Algorithm

Search Result 2, Processing Time 0.016 seconds

Convergence Comparison of Metal Artifact Reduction Rate for Pacemaker Insertion of CT Imaging Phantoms in the Raw Data with MAR Algorithm (심박조율기 삽입 팬텀의 CT영상 원시데이터에 금속인공물감소 알고리즘 적용 시 금속인공물 감소율의 융합적 비교)

  • Kim, Hyeon-ju;Yoon, Joon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2017
  • In the analyzed cardiac CT algorithm applied when comparing the MAR self-made metal artifact reduction in pacemaker inserted phantom degree. Result of comparing the energy value by CT showed a decrease in the CT value in the case of BKG 40 KeV in WSA maximum decreased to 663.2% in the case of 140 KeV BHA were increased a maximum of 56.2%. In addition, the maximum was decreased by approximately 145% based on a 70 KeV artifacts in CT value comparison by type WSA, BHA was to increase up to approximately 46.38%. MAR Algorithm is believed to provide a more quality cardiac CT image if the energy changes, or have the effect that by type and irrespective of reduced metal artifacts occurrence of artifacts applied to the pacemaker when tracking a heart CT scan after inserting MAR algorithm.

A Study of the Metal Artifact Reduction using Dual Energy CT : Clinical Applications of Dual Energy and MAR Algorithm (Dual Energy CT를 이용한 금속물질 인공물 감소방법 : Dual Energy와 MAR알고리즘의 임상적 응용)

  • Park, Ki Seok;Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.273-279
    • /
    • 2021
  • Metal material inserted into the body have a large difference in density from human tissues or bones around the Metal during CT scans.. Therefore, the Metal material inserted into the body produces Artifact. Metal Artifact, which occurs around Metals, can degrade the quality of CT images, causing confusion when medical team diagnose lesions. Through this experiment, we confirm that the occurrence of Artifacts decrease by using Dual energy CT and MAR algorithm in Single source Dual energy CT. We also want to present basic data on clinical application methods by comparing and analyzing the characteristics of images obtained by each method. Using GE 750HD CT, artificial implants were scanned using general method and Dual energy. Then we apply the MAR algorithm to each image obtained. And all previously acquired images were compared and analyzed the characteristics of the examination, such as image quality evaluation and dose evaluation. Images with MAR algorithm and Dual Energy confirmed a decrease in Metal Artifact. Images with MAR algorithm have reduced Metal Artifact, but have the disadvantage of distorting the details of artificial joint implants. On the other hand images teseted with Dual Energy have the advantage of being able to implement details than those applied with MAR algorithms, it takes longer to reconstruct the image and the exposure dose was about four times higher than those applied with MAR algorithm. In order to locate Metals, such as the post-operative follow-up period, it is useful to apply MAR algorithm to obtain images. And it is more useful to examine with Dual Energy when micro lesion identification, such as cardiac examination, and surgical planning or when tests are performed in diagnostic way.