• Title/Summary/Keyword: Carcinoma cell line

Search Result 420, Processing Time 0.025 seconds

Effect of Resveratrol on Oral Cancer Cell Invasion Induced by Lysophosphatidic Acid

  • Kim, Jin Young;Cho, Kyung Hwa;Lee, Hoi Young
    • Journal of dental hygiene science
    • /
    • v.18 no.3
    • /
    • pp.188-193
    • /
    • 2018
  • The aim of the current study was to demonstrate the potential therapeutic efficacy of resveratrol in oral cancer patients. Lysophosphatidic acid (LPA) intensifies cancer cell invasion and metastasis, whereas resveratrol, a natural polyphenolic compound, possesses antitumor activity, suppressing cell proliferation and progression in various cancer cell lines (ovarian, gastric, oral, pancreatic, colon, and prostate cancer cells). In addition, resveratrol has been identified as an inhibitor of LPA-induced proteolytic enzyme expression and ovarian cancer invasion. Furthermore, resveratrol was shown to inhibit oral cancer cell invasion by downregulating hypoxia-inducible factor $1{\alpha}$ and vascular endothelial growth factor expression. Recently, we demonstrated that LPA is important for the expression of transcription factors TWIST and SLUG during epithelial-mesenchymal transition (EMT) in oral squamous carcinoma cells. In this study, we treated serum-starved cultures of oral squamous carcinoma cell line YD-10B with resveratrol for 24 hours prior to stimulation with LPA. To identify an optimal resveratrol concentration that does not induce apoptosis in oral squamous carcinoma cells, we determined the toxicity of resveratrol in YD-10B cells by assessing their viability using the MTT assay. Another assay was performed using Matrigel-coated cell culture inserts to detect oral cancer cell invasion activity. Immunoblotting was applied for analyzing protein expression of SLUG, TWIST1, E-cadherin, and GAPDH. We demonstrated that resveratrol efficiently inhibited LPA-induced oral cancer cell EMT and invasion by downregulating SLUG and TWIST1 expression. Therefore, resveratrol may potentially reduce oral squamous carcinoma cell invasion and metastasis in oral cancer patients, improving their survival outcomes. In summary, we identified new targets for the development of therapies against oral cancer progression and characterized the therapeutic potential of resveratrol for the treatment of oral cancer patients.

Identification of a Cancer Stem-like Population in the Lewis Lung Cancer Cell Line

  • Zhang, An-Mei;Fan, Ye;Yao, Quan;Ma, Hu;Lin, Sheng;Zhu, Cong-Hui;Wang, Xin-Xin;Liu, Jia;Zhu, Bo;Sun, Jian-Guo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.3
    • /
    • pp.761-766
    • /
    • 2012
  • Objective: Although various human cancer stem cells (CSCs) have been defined, their applications are restricted to immunocompromised models. Developing a novel CSC model which could be used in immunocompetent or transgenic mice is essential for further understanding of the biomolecular characteristics of tumor stem cells. Therefore, in this study, we analyzed murine lung cancer cells for the presence of CSCs. Methods: Side population (SP) cells were isolated by fluorescence activated cell sorting, followed by serum-free medium (SFM) culture, using Lewis lung carcinoma cell (LLC) line. The self-renewal, differentiated progeny, chemosensitivity, and tumorigenic properties in SP and non-SP cells were investigated through in vitro culture and in vivo serial transplantation. Differential expression profiles of stem cell markers were examined by RT-PCR. Results: The SP cell fraction comprised 1.1% of the total LLC population. SP cells were available to grow in SFM, and had significantly enhanced capacity for cell proliferation and colony formation. They were also more resistant to cisplatin in comparison to non-SP cells, and displayed increased tumorigenic ability. Moreover, SP cells showed higher mRNA expression of Oct-4, ABCG2, and CD44. Conclusion: We identified SP cells from a murine lung carcinoma, which possess well-known characteristics of CSCs. Our study established a useful model that should allow investigation of the biological features and pharmacosensitivity of lung CSCs, both in vitro and in syngeneic immunocompetent or transgenic/knockout mice.

Synthesis and in vitro Antitumor Activity of 2-Alkyl, 2-Aryl, and 2-Piperazinyl Benzimidazole-4, 7-dione Derivatives

  • Ahn, Chan-Mug;Tak, Jung-Ae;Choi, Sun-Ju
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.288-301
    • /
    • 2000
  • A series of 2-alkyl, 2-aryl, and 2-piperazinyl benzimidazole-4,7-dione derivatives (7a-h) and 16m-o) were prepared, and their cytotoxicities were tested against three cancer cell lines (mouse lymphocytic leukemia cell line P388, and human gastric carcinoma cell lines SNU-1 and SNU-16). These compounds showed potent cytotoxicity against all of three cell lines tested, and especially SNU-16 was sensitive to them. 2-Aryl (7g,h) and 2-piperazinyl benzimidazole-4,7-dione derivative (I6 m) were more potent than mitomycin C against P388 and SNU-16. Among benzimidazole-4,7-dione derivatives with alkyl group at position 2, 7a had the most potent cytotoxicity against all of the cell lines tested.

  • PDF

Anti-Proliferation Effects and Molecular Mechanisms of Action of Tetramethypyrazine on Human SGC-7901 Gastric Carcinoma Cells

  • Ji, Ai-Jun;Liu, Sheng-Lin;Ju, Wen-Zheng;Huang, Xin-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3581-3586
    • /
    • 2014
  • Aim: To investigate the effects of tetramethypyrazine (TMP) on proliferation and apoptosis of the human gastric carcinoma cell line 7901 and its possible mechanism of action. Methods: The viability of TMP-treated 7901 cells was measured with a 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and cell apoptosis was analyzed by flow cytometry. The distribution of cells in different phases of cell cycle after exposure of TMPs was analyzed with flow cytometry. To investigate the molecular mechanisms of TMP-mediated apoptosis, the expression of NF-${\kappa}Bp65$, cyclinD1 and p16 in SGC-7901 cells was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Results: TMP inhibited the proliferation of human gastric carcinoma cell line 7901 in dose and time dependent manners. Cell growth was suppressed by TMP at different concentrations (0.25, 0.5, 1.0, 2.0 mg/ml), the inhibition rate is 0.46%, 4.36%, 14.8%, 76.1% (48h) and 15.5%, 18.5%, 41.2%, 89.8% (72h) respectively. When the concentration of TMPs was 2.0mg/ml, G1-phase arrest in the SGC-7901 cells was significant based on the data for cell cycle distribution. RT-PCR demonstrated that NF-${\kappa}Bp65$ and cyclin D1 mRNA expression was significantly down-regulated in 7901 cells treated with 2.0 mg/ml TMP for 72h (p<0.05), while the p16 mRNA level was up-regulated (p<0.05). The protein expression of NF-${\kappa}Bp65$ and cyclin D1 decreased gradually with the increase in TMP concentration, compared with control cells (p<0.05), while expression of protein p16 was up-regulated (p<0.01). Conclusion: TMP exhibits significant anti-proliferative and pro-apoptotic effects on the human gastric carcinoma cell line SGC-7901. NF-${\kappa}Bp65$, cyclinD1 and p16 may also play important roles in the regulation mechanisms.

Factors Prognostic for Survival in Japanese Patients Treated with Sunitinib as First-line Therapy for Metastatic Clear Cell Renal Cell Cancer

  • Kawai, Y;Osawa, T;Kobayashi, K;Inoue, R;Yamamoto, Y;Matsumoto, H;Nagao, K;Hara, T;Sakano, S;Nagamori, S;Matsuyama, H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.14
    • /
    • pp.5687-5690
    • /
    • 2015
  • Background: Factors predictive of survival have been identified in Western patients with metastatic clear cell renal cell carcinoma (mCCRCC) treated with sunitinib. Less is known, however, about factors predictive of survival in Japanese patients. This study evaluated factors prognostic of survival in Japanese patients with mCCRCC treated with first-line sunitinib. Materials and Methods: This retrospective study evaluated 46 consecutive Japanese mCCRCC patients treated with sunitinib as first line therapy. Clinical and biochemical markers associated with progression-free survival (PFS) were analyzed, with prognostic factors selected by uniand multivariate Cox regression analyses. Results: Univariate analysis showed that factors significantly associated with poor PFS included Memorial Sloan-Kettering Cancer Center poor risk scores, International Metastatic RCC Database Consortium poor risk and high (>0.5 mg/dl) serum C-reactive protein (CRP) concentrations (p<0.001 each). Multivariate analysis showed that high serum CRP was independently associated with poorer PFS (p=0.040). Six month disease control rate (complete response, partial response and stable disease) in response to sunitinib was significantly higher in patients with normal (${\leq}0.5mg/dl$) than elevated baseline CRP (p<0.001). Conclusions: CRP is a significant independent predictor of PFS for Japanese patients with mCCRCC treated with first-line sunitinib. Pretreatment CRP concentration may be a useful biomarker predicting response to sunitinib treatment.

Effects of Promoter Methylation on the Expression Levels of Plakoglobin Gene in Both the ARO Thyroid Cancer Cell Line and Cancer Tissues

  • Han, Kyung-Hee;Kim, Tai-Jeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.4
    • /
    • pp.180-188
    • /
    • 2009
  • Plakoglobin (PKG) is a protein linking cadherin adhesion receptors to the actin cytoskeleton and its overexpression has been known to suppress cell proliferation and tumorigenesis in thyroid cancer. We investigated the effect of 5-aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor, on the methylation status of the promoter and the expression of the plakoglobin gene in a thyroid carcinoma cell line (ARO) and papillary thyroid carceinoma. In cultures of ARO cell line incubated without 5-Aza-2'-deoxycytidine (5-Aza-CdR), five of the fifteen CpG sites in the promoter spanning -225 and -54 were methylated at 4.2 - 12.5%. When the cells were treated with 5-Aza-CdR, all the methylated CpG sites were induced to be demethylated except one. In addition, a new methylation at one CpG site, CpG4, was identified at level of 12.0%. The expression level of PKG decreased approximately 10-fold in the 5-Aza-CdR treated cells compared to untreated cells. Different pattern of promoter methylation and expression of PKG was also observed in the tissue samples. CpG10 and CpG12 sites were methylated at 9.0-27.0% in normal tissues. However, in cancer tissues, CpG5 and CpG10 sites were methylated at 10.0-22.0%. Three of ten normal thyroid tissue samples and one of thirteen papillary carcinoma tumor samples showed increased PKG mRNA expression level. PKG protein expression analyzed by the immunohistochemical staining showed higher expression in the tumor compared with normal.

  • PDF

MicroRNA-451 Inhibits Growth of Human Colorectal Carcinoma Cells via Downregulation of Pi3k/Akt Pathway

  • Li, Hong-Yan;Zhang, Yan;Cai, Jian-Hui;Bian, Hong-Lei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3631-3634
    • /
    • 2013
  • MicroRNAs (MiRNAs) play important roles in coordinating a variety of cellular processes and abnormal expression has been linked to the occurrence of several cancers. The miRNA miR-451 is downregulated in colorectal carcinoma (CRC) cells, suggested by several research groups including our own. In this study, synthetic miR-451 mimics were transfected into the SW620 human CRC cell line using Lipofectamine 2000 and expression of miR-451 was analyzed by real time PCR, while expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2 was analyzed by Western blot, and cell growth was detected by MTT assay. In comparison to the controls, a significant increase in the expression of miR-451 was associated with significantly decreased expression of CAB39, LKB1, AMPK, AKT, PI3K and Bcl2. The capacity of cell proliferation was significantly decreased by miR-451 expression, which also inhibited cell growth. Our study confirmed that miR-451 has a repressive role in CRC cells by inhibiting cell growth through down-regulating the P13K/AKT pathway.

Bactericidal Application and Cytotoxic Activity of Biosynthesized Silver Nanoparticles with an Extract of the Red Seaweed Pterocladiella capillacea on the HepG2 Cell Line

  • El Kassas, Hala Yassin;Attia, Azza Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1299-1306
    • /
    • 2014
  • Background: Nano-biotechnology is recognized as offering revolutionary changes in various fields of medicine. Biologically synthesized silver nanoparticles have a wide range of applications. Materials and Methods: Silver nanoparticles (AgNPs) were biosynthesized with an aqueous extract of Pterocladiella (Pterocladia) capillacea, used as a reducing and stabilizing agent, and characterized using UV-VIS spectroscopy, Fourier Transform Infra red (FT-IR) spectroscopy, transmission electron microscopy (TEM) and energy dispersive analysis (EDX). The biosynthesized AgNPs were tested for cytotoxic activity in a human hepatocellular carcinoma ($HepG_2$) cell line cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, 1% antibiotic and antimycotic solution and 2 mM glutamine. Bacterial susceptibility to AgNPs was assessed with Staphylococcus aureus, Bacillus subtilis [Gram+ve] and Pseudomonas aeruginosa and Escherichia coli [Gram-ve]. The agar well diffusion technique was adopted to evaluate the bactericidal activity of the biosynthesized AgNPs using Ampicillin and Gentamicin as gram+ve and gram-ve antibacterial standard drugs, respectively. Results: The biosynthesized AgNPs were $11.4{\pm}3.52$ nm in diameter. FT-IR analysis showed that carbonyl groups from the amino acid residues and proteins could assist in formation and stabilization of AgNPs. The AgNPs showed potent cytotoxic activity against the human hepatocellular carcinoma ($HepG_2$) cell line at higher concentrations. The results also showed that the biosynthesized AgNPs inhibited the entire panel of tested bacteria with a marked specificity towards Bacillus subtillus. Conclusions: Cytotoxic activity of the biosynthesized AgNPs may be due to the presence of alkaloids present in the algal extract. Our AgNPs appear more bactericidal against gram-positive bacteria (B. subtillus).