• 제목/요약/키워드: Carburizing Furnace

검색결과 14건 처리시간 0.02초

진공 침탄로 내의 전열 해석 (Heat Transfer Analysis in the Vacuum Carburizing Furnace)

  • 이인섭;유홍선;김원배;양제복
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.877-882
    • /
    • 2003
  • The main objective of the present study is to analyze the heat transfer characteristics in the vacuum carburizing furnace. Local temperatures are measured at different locations in the self-fabricated furnace for various operating conditions using K-type thermocouples. In addition, the present study simulates the fluid flows and heat transfer in the vacuum carburizing furnace using a commercial package (Fluent V. 6.0), and compares the predictions of local temperatures with experimental data. The temperature and flow fields are predicted. It is found that the time taken for reaching the steady-state temperature under the vacuum pressure is shorter than that under the normal pressure condition. It means that the carburizing furnace under vacuum pressure condition is capable of saving the required energy more efficiently than the furnace under the normal pressure condition. Furthermore, the temperature variations predicted by the numerical simulations are in good agreement with experimental data.

1 톤급 양산형 진공 침탄로에서 아세틸렌 유량과 로 내 위치에 따른 AISI 4115 강의 침탄 거동 (Carburizing Behavior of AISI 4115 Steel with a Flow Rate of Acetylene and Specimen Location in an 1 ton-class Mass Production-type Vacuum Carburizing Furnace)

  • 권기훈;문경일;박현준;이영국;정민수
    • 열처리공학회지
    • /
    • 제34권6호
    • /
    • pp.272-280
    • /
    • 2021
  • The influence of acetylene flow rates on the carburizing behavior of an AISI 4115 steel in 1 ton-class mass production-type vacuum carburizing furnace has been studied through microstructure, carbon concentration, hardness analyses. The AISI 4115 steels were carburized with various flow rates (20, 32.7, 60 l/min) and locations in the furnace (top, center, bottom) at 950℃. The acetylene flow rate played an important role in controlling the carburizing properties of carburized samples, such as effective case depth and uniformity carburizing according to location in the furnace. At an acetylene flow rate of 20 l/min, the carburized samples had a shallow average hardened layer (0.645 mm) compared to the target hardening depth (1 mm) due to low carbon flux and spatial uniformity of carburization (17.8%) in the furnace. At a flow rate of 60 l/min, the carburized samples showed an average hardened layer (1.449 mm) deeper than the target hardening depth and had the spatial uniformity of carburization (98.8%). In particular, at a flow rate of 32.7 l/min, the carburized samples had an average hardened layer (1.13 mm) close to the target hardening depth and had the highest carburizing uniformity (99.1%). As a result, an appropriate flow rate of 32.7 l/min was derived to satisfy the target hardening depth and to have spatial uniform hardened layer in the furnace.

진공침탄열처리강의 조직 및 유효경화깊이 (Microstructure and Effective Case Depth of the Vacuum Carburized Steels)

  • 최영택;변상교
    • 열처리공학회지
    • /
    • 제5권1호
    • /
    • pp.32-40
    • /
    • 1992
  • This content is a part of the results of the study on the development of the vacuum carburizing technology. In this study the vacuum carburizing furnace being used was the furnace that developed through the joint project between KIMM and Kyung-Pook Heat Treating Co. from June 1988 to Nov. 1990. And the used carburizing gas was the propane gas and the introducing methods of the gas applied two methods such as pulse and constant pressure. By this study we established the basis of the furnace manufacturing technology and of the processing technology in the vacuum carburizing. Above all in this work there are notable meanings in a viewpoint of the foremost research in home. Hereafter, we are going to industrialize the vacuum carburizing technology by improving the results of the present work and by developing the process for the mass production.

  • PDF

진공상태에서의 전열현상에 대한 실험적 연구 (Experimental Study of Heat Transfer in Vacuum Furnace)

  • 양제복;김원배;동상근
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.109-113
    • /
    • 2003
  • Low pressure or vacuum carburizing(LPC) has undergone major further developments since 1980 and now it has achieved industrial maturity. The advantage of low pressure vacuum carburizing over gas carburizing is not only the creation of surface entirely free of oxide and environmentally friendly but also a reduction in batch times, lower gas and energy consumption and the prevention of soot. In this study the experiment was carried out to investigate the effects of vacuum atmosphere in the heating furnace. Heat transfer rate and uniformity of temperatures of test samples in the pressure range of a few 0.1torr was examined on a test charge of 100kg. It is found that the fuel saving rate due to decreasing heating time reach to 20% in the vacuum heating mode as compared with atmospheric heating mode. Also the uniformity of temperatures in the samples was improved significantly in the vacuum heating mode. Also the effects of the RC fan for stirring atmosphere inside furnace was examined. Results shows RC fan appears to provide a reasonable tool for improving uniformity of temperature in the atmospheric heating mode.

  • PDF

Cr-Mo 저합금강의 진공침탄 공정 압력 및 질소 첨가 비율에 따른 경화깊이 균일도 및 표면 특성 효과 (Effect of process pressure and nitrogen addition ratio on the uniformity of hardening depth and surface properties of Cr-Mo low alloy steel in vacuum carburizing)

  • 권기훈;박현준;안기원;이영국;문경일
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.94-103
    • /
    • 2023
  • The effects of carburizing pressure and gas ratio on vacuum carburizing properties (uniformity and surface characteristics) have been studied through the analyses of carbon concentration, hardness, surface color, surface roughness and type of carbon bonding. AISI 4115 steel specimens were carburized with various pressures (1, 5, and 10 Torr) at different locations (P1, P2, P3, P4, P5, and P6) inside a furnace held at 950 ℃. Since the carburizing pressure represents the density of the carburizing gas, it plays an important role in improving the carburizing uniformity according to locations in the furnace. As the carburizing pressure increased, the carburizing uniformity according to the sample location was improved, but the surface of the carburized specimen was discolored due to the residual acetylene gas, which does not contribute to the carburizing reaction. Therefore, the carburizing uniformity and surface discoloration have been improved by injecting acetylene gas (carburizing gas) and nitrogen gas (non-reactive gas) in a specific ratio.

Vacuum Carburizing System for Powdered Metal Parts & Components

  • Kowakewski, Janusz;Kucharski, Karol
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1018-1021
    • /
    • 2006
  • Powdered metal parts and components may be carburized successfully in a vacuum furnace by combining carburizing technology $VacCarb^{TM}$ with a hi-tech control system. This approach is different from traditional carburizing methods, because vacuum carburizing is a non-equilibrium process. It is not possible to set the carbon potential as in a traditional carburizing atmosphere and control its composition in order to obtain a desired carburized case. This paper presents test results that demonstrate that vacuum carburizing system $VacCarb^{TM}$ carburized P.M. materials faster than traditional steel with acceptable results. In the experiments conducted, PM samples with the lowest density and open porosity showed a dramatic increase in the surface carbon content up to 2.5%C and a 3 times deeper case. Currently the boost-diffusion technique is applied to control the surface carbon content and distribution in the case. In the first boost step, the flow of the carburizing gas has to be sufficient to saturate the austenite, while avoiding soot deposition and formation of massive carbides. To accomplish this goal, the proper gas flow rate has to be calculated. In the case of P.M. parts, more carbon can be absorbed by the part's surface because of the additional internal surface area created by pores present in the carburized case. This amount will depend on the density of the part, the densification grade of the surface layer and the stage of the surface. "as machined" or "as sintered". It is believed that enhanced gas diffusion after initial evacuation of the P.M. parts leads to faster carburization from within the pores, especially when pores are open . surface "as sintered" and interconnected . low density. A serious problem with vacuum carburizing is delivery of the carbon in a uniform manner to the work pieces. This led to the development of the different methods of carburizing gas circulation such as the pulse/pump method or the pulse/pause technique applied in SECO/WARWICK's $VacCarb^{TM}$ Technology. In both cases, each pressure change may deliver fresh carburizing atmosphere into the pores and leads to faster carburization from within the pores. Since today's control of vacuum carburizing is based largely on empirical results, presented experiments may lead to better understanding and improved control of the process.

  • PDF

CO2 무 배출 침탄 열처리된 SCM415H 소재의 기계적 성질 (Mechanical Properties of The CO2 Free Vacuum Carburized in SCM415H)

  • 변재혁;노승훈;이종형;이창헌;양성현
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.971-978
    • /
    • 2012
  • 진공침탄법은 이산화탄소의 발생이 없는 친환경적인 열처리 방식으로 알려져 있다. 그러나 진공침탄법은 탄화수소 가스(메탄, 프로판)를 노내에 직접 공급하여 열분해하는 과정을 거침으로써 노내에 그을음이 발생하여 안정적인 조업이 불가능한 단점이 있다. 최근에는 이러한 단점을 극복하기위한 불포화 탄화수소인 아세틸렌가스를 이용한 진공침탄법이 활발히 연구되고 있다. 본 논문에서는 아세틸렌가스를 이용한 진공침탄방식의 침탄 및 확산 시간을 변수로 하여 여러 가지 조건에서 열처리를 진행한 후 가스침탄 열처리된 소재와 기계적 성질을 비교 분석하여 이산화탄소 무 배출 진공침탄 열처리 방법의 활용가능성을 확인하였다. 연구결과 본 연구에서 시도된 진공침탄법은 가스침탄에서 나타나는 입계산화층이 발생하지 않았으며 경도 값은 진공침탄 시험편의 유효경화 깊이가 29.8% 크게 나타났으며 인장강도는 가스침탄보다 10%낮게 나왔으나 허용치를 충분히 만족하는 수준이었다.

유동상열처리로에 의해 BORIDING처리한 철강재료의 미끄럼마모특성연구 (Sliding Wear Properties of Borided Iron and Steel in Fluidized Bed Furnace)

  • 이한영;배석천
    • 열처리공학회지
    • /
    • 제9권4호
    • /
    • pp.261-270
    • /
    • 1996
  • Boriding is one of the chemical methods to achieve the case hardening of steel as well as nitriding or carburizing. The surface layer of the borided steel shows higher hardness and exhibits better resistance to corrosion or fatigue than the nitrided or carburized steel. The great majority of previous studies were confined to mild steel or some alloy steel. To enlarge the application, ductile cast iron (DCI) as a material for boriding has been tried in this study. Thus, sliding wear test has conducted using a pin-on-disc machine to compare between borided DCI and mild steel in fluidized bed furnace. The results show that the wear resistance of borided DCI is improved. Especially it is more efficient in the case of occurence of the mechanical wear.

  • PDF

가스침탄 처리한 AISI 8620 강에서 급냉제가 표면잔류응력에 미치는 영향 (Effect of Quenchant Temperature on the Surface Residual Stress in Gas Carburized AISI 8620 Steel)

  • 장충길;한준희;황농문;김종집;임병수
    • 열처리공학회지
    • /
    • 제2권2호
    • /
    • pp.27-32
    • /
    • 1989
  • The effect of quenchant temperature on the surface residual stress was studied for AISI 8620 steel. Specimens were carburized at $900^{\circ}C$ in all case type furnace using a gas-base atmosphere of methanol cracked and liquefied petroleum gas, and then subjected to single reheat quenchant in oil or salt bath in the temperature range of $60^{\circ}C$ to $300^{\circ}C$. After carburizing and reheat Quenching, residual stress was measured by the hole drilling method. Experimental results showed that the surface residual stress was increased as the quenchant temperature was raised. This is in contrast to the fact that the formation of phase of low transformation strain such as bainite results in lower surface compressive stress. The greater compressive stress observed in specimens Quenched at higher temperature may be attributed to the shifting of the transformation start point farther from the surface, as was reported in other carburizing steels.

  • PDF