• Title/Summary/Keyword: Carboxypeptidase D

Search Result 7, Processing Time 0.034 seconds

Synethesis of bradykinin analogues by new reaction vessel (새로운 반응기구에 의한 bradykinin 유사물의 합성)

  • Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.334-338
    • /
    • 1991
  • Synthesis of $(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin by solid phase method using a new reaction vessel was carried out. Coupling was performed by dicyclohexylcarbodiimide. After cleavage with dried HBr the peptides were purified by high pressure liquied chromatography. Their purify was assayed by paper and thin layer chromatography, melting point and amino acid analysis. $(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin were incubater in vitro endopeptidase $({\alpha}-chymotrysis)$ and exopeptidase(carboxypeptidase A, leucine aminopeptidase) in order to study the degradation pattern of peptides. $(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin were rapidly degradated by ${\alpha}-chymotrypsin$ and carboxypeptidase A $(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin coution$(D-Phe^7\;-Leu^8)$ bradykinin and bradykinin contain imino peptide bound from proline at N-terminal and therefore they were not attacted by leucine aminopeptidase.

  • PDF

All-trans Retinoic Acid Induces Expression and Secretion of Carboxypeptidase D in THP-1 Cells

  • Nguyen, Hang Thi Thu;Kim, Jae Young
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.256-266
    • /
    • 2020
  • Carboxypeptidase D (CPD) is a zinc-dependent protease, which is highly expressed in macrophages, and is thought to participate in inflammatory processes. In the present study, we investigated the possible regulatory effect of all-trans retinoic acid (ATRA), which is an active form of vitamin A and plays a critical regulatory role in both the innate and adaptive immunity, on CPD expression and secretion in human monocytic THP-1 cells. CPD mRNA expression first increased, from a concentration as low as 10 nM ATRA to a maximum level of expression, at 1 μM. ATRA enhanced intracellular CPD expression in a time- and concentration-dependent manner but did not affect cell surface CPD expression. Interestingly, 9-cis-RA did not affect CPD expression. Additionally, an experiment with RAR/RXR selective agonist or antagonists demonstrated that ATRA-induced enhancement of CPD expression was RAR/RXR dependent. ATRA also enhanced CPD secretion from THP-1 cells; however, this enhancement was RAR/RXR-independent. The anti-inflammatory agent dexamethasone reversed ATRA-induced enhancement of CPD expression and secretion. Our results suggest ATRA exerts regulatory effects on expression and secretion of CPD in human monocytes, and ATRA-induced CPD secretion may be associated with inflammatory response.

Production of Active Carboxypeptidase Y of Saccharomyces cerevisiae Secreted from Methylotrophic Yeast Pichia pastoris

  • RO, HYEON-SU;LEE, MI-SUN;HAHM, MOON-SUN;BAE, HEE-SUNG;CHUNG, BONG HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.202-205
    • /
    • 2005
  • Our previous study showed that the overexpression of carboxypeptidase Y (CPY) of Saccharomyces cerevisiae in Escherichia coli resulted in the formation of insoluble inclusion bodies. To produce soluble CPY, we designed a novel Pichia pastoris expression system, in which the following were inserted into expression vectors: three different signal sequences derived from the mating factor a1 of S. cerevisiae, an inulinase of Kluyveromyces marxianus, and the endogenous signal sequence of CPY. The expression vector pHIL-D2-SSinul-proCPY was the most effective in the production of proCPY among the vectors examined. The purified active CPY was obtained from proCPY by treating with proteinase K, followed by QExcellose ion-exchange column chromatography.

The Molecular Mechanical Model of DD-Peptidase

  • Lim, Eongjin;Won, Youngdo
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.22-22
    • /
    • 1996
  • In order to establish the structural requirements for designing new ${\beta}$-lactam antibiotics it is necessary to build the molecular model of a penicillin binding protein. D-alanyl-D-alanine carboxypeptidase/transpeptidase (DD-peptidase) is a good model for PBPs. The X -ray crystallographic structure of DD-peptidase has been reported at the 1.6${\AA}$ resolution. (omitted)

  • PDF

Detecting Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa) and Inactivated TAFIa (TAFIai) in Normal and Hemophilia A Plasmas

  • Hulme, John P.;An, Seong Soo A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.77-82
    • /
    • 2009
  • Thrombin activatable fibrinolysis inhibitor (TAFI) also known as plasma procarboxypeptidase B or U is a 60 kD glycoprotein, which is the major modulator of fibrinolysis in plasma. TAFI is a proenzyme, which is activated by proteolytic cleavage to an active carboxypeptidase B-like enzyme (TAFIa, 35.8 kD) by thrombin/thrombomodulin and plasmin. Modulation of fibrinolysis occurs when TAFIa enzymatically removes C-terminal lysine residues of partially degraded fibrin, thereby inhibiting the stimulation of tissue plasminogen activator (t-PA) modulated plasminogen activation. TAFIa undergoes a rapid conformational change at $37{^{\circ}C}$ to an inactive isoform called TAFIai. Potato tuber carboxypetidase inhibitor (PTCI) was shown to specifically bind to TAFIa as well as TAFIai. In this study, a novel immunoassay TAFIa/ai ELISA was used for quantitation of the two TAFI activation isoforms TAFIa and TAFIai. The ELISA utilizes PTCI as the capture agent and a double antibody sandwich technique for the detection. Low levels of TAFIa/ai antigen levels were detected in normal plasma and elevated levels were found in hemophilia A plasmas. TAFIa/ai antigen represents a novel marker to monitor fibrinolysis and TAFIa/ai ELISA may be a valuable assay for studying the role of TAFI in normal hemostasis and in pathological conditions.

Enzymatic Degradation of Leucine Enkephalin and $[D-Ala^2]$-Leucine Enkephalinamide in Various Rabbit Mucosa Extracts (토끼의 수종 점막 추출액중 로이신엔케팔린 및 [D-알라$^2]$-로이신엔케팔린아미드의 효소적 분해 특성)

  • Chun, In-Koo;Park, In-Sook
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.530-543
    • /
    • 1994
  • To study the feasibility of transmucosal delivery of leucine enkephalin (Leu-Enk) and $[D-ala^2]$-leucine enkephalinamide (YAGFL), their degradation extents and pathways in various rabbit mucosa extracts were investigated by high performance liquid chromatography. The degradation of Leu-Enk and YAGFL was observed to follow the first-order kinetics. The degradation half-lives of Leu-Enk in the nasal, rectal and vaginal mucosal extracts were 1.62, 0.37 and 1.12 hrs and those of YAGFL were 30.55, 9.70 and 6.82 hrs, respectively, indicating Leu-Enk was degraded in a more extensive and rapid manner than YAGFL. But the mucosal and serosal extracts of the same mucosa showed the similar degradation rates for both pentapeptides. The degradation was most rapid in the neutral pH and increasing concentrations of substrates retarded the degradation rates. The maior hydrolytic fragments of Leu-Enk were Des-Tyr-Leu-Enk and tyrosine, indicating the enzymatic hydrolysis by aminopeptidases. However, the data also suggested endopeptidases such as dipeptidyl carboxypeptidase and dipeptidyl aminopeptidase could play some role in the degradation of Leu-Enk. On the other hand, the hydrolytic fragments of YAGFL in all the mucosa extracts were mainly Tyr-D-Ala-Gly and Phe-Leu-Amide, demonstrating the hydrolytic breakdown by endopeptidases. The degradation pathways were further explored by concomitantly determining the formation of smaller metabolites of primary hydrolytic fragments of Leu-Enk and YAGFL in the mucosa extracts.

  • PDF

Enzymatic Activity and Amino Acids Production of Predominant Fungi from Traditional Meju during Soybean Fermentation

  • Dong Hyun Kim;Byung Hee Chun;Jae-Jung Lee;Oh Cheol Kim;Jiye Hyun;Dong Min Han;Che Ok Jeon;Sang Hun Lee;Sang-Han Lee;Yong-Ho Choi;Seung-Beom Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.654-662
    • /
    • 2024
  • To investigate the effect of the predominant fungal species from Korean traditional meju and doenjang on soybean fermentation, the enzymatic activity and amino acid production of twenty-two fungal strains were assessed through solid- and liquid-state soybean fermentation. Enzymatic activity analyses of solid-state fermented soybeans revealed different enzyme activities involving protease, leucine aminopeptidase (LAP), carboxypeptidase (CaP), glutaminase, γ-glutamyl transferase (GGT), and amylase, depending on the fungal species. These enzymatic activities significantly affected the amino acid profile throughout liquid-state fermentation. Strains belonging to Mucoromycota, including Lichtheimia, Mucor, Rhizomucor, and Rhizopus, produced smaller amounts of total amino acids and umami-producing amino acids, such as glutamic acid and aspartic acid, than strains belonging to Aspergillus subgenus circumdati. The genera Penicillium and Scopulariopsis produced large amounts of total amino acids and glutamic acid, suggesting that these genera play an essential role in producing umami and kokumi tastes in fermented soybean products. Strains belonging to Aspergillus subgenus circumdati, including A. oryzae, showed the highest amino acid content, including glutamic acid, suggesting the potential benefits of A. oryzae as a starter for soybean fermentation. This study showed the potential of traditional meju strains as starters for soybean fermentation. However, further analysis of processes such as the production of G-peptide for kokumi taste and volatile compounds for flavor and safety is needed.