• Title/Summary/Keyword: Carboxylic iron phthalocyanine

Search Result 2, Processing Time 0.018 seconds

Preparation of Novel Iron Phthalocyanine Containing Reactive Groups and its Deodorizing Property on Cellulose

  • Kim, Eun-Mi;Choi, Jae-Hong
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.247-253
    • /
    • 2013
  • The enzyme-like catalytic functions of metal complex phthalocyanine derivatives those containing carboxylic acid groups could be applied as odor-removing systems and antibacterial systems. Pyromellitic dianhydride and 4-nitrophthalimide were used as starting material for synthesizing dinitro-tetracarboxylic acid iron phthalocyanine(compound 1). Then diamino-tetracarboxylic phthalocyanine(compound 2) was obtained by reduction of compound 1. For the formation of covalent bond with cellulose fiber, cyanuric chloride was introduced to the amino group of compound 2 by condensation reaction compound 3. The exhaustion method was employed for adsorbing compound 3 on cotton fiber. K/S values of each fabrics were measured by a CCM system and deodorizing rates were tested by a detector tube method for ammonia gas. K/S values of treated cotton fiber with compound 3 were arranged from 2.1 to 4.2 at $90^{\circ}C$ of exhaustion temperature. Deodorizing rates provided result of 81%, 84%, 88%, 91%, by passing time of 30 min, 60 min, 90 min, 120 min, respectively.

Adsorption of Amine and Sulfur Compounds by Iron Phthalocyanine Derivatives (철 프탈로시아닌 유도체에 의한 아민 및 황 화합물의 흡착)

  • Lee, Jeong-Se;Park, Jin-Do;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.575-584
    • /
    • 2007
  • The adsorption capability of iron phthalocyanine derivatives were investigated by means of X-ray diffractometor (XRD), IR (infrared) spectroscopy, scanning electron microscopy (SEM) and temperature programmed desorption (TPD). According to TPD results, iron phthalocyanine derivatives showed two desorption peaks at low temperature ($100{\sim}150^{\circ}C$) and high temperature ($350{\sim}400^{\circ}C$) indicating that there were two kinds of acidities. Tetracarboxylic iron phthalocyanine (Fe-TCPC) have a stronger desorption peak (chemical adsorption) at the high temperature and a weaker desorption peak (physical adsorption) at the low temperature than iron phthalocyanine (Fe-PC). The specific surface areas of Fe-TCPC and Fe-PC were $26.46\;m^2/g\;and\;11.77\;m^2/g$, respectively. The pore volumes of Fe-TCPC and Fe-PC were $0.14\;cm^3/g\;and\;0.06\;cm^3/g$, respectively. The adsorption capability of triethyl amine calculated by breakthrough curve at 220 ppm of equilibrium concentration was 29.2 mmoL/g for Fe-TCPC and 0.8 mmoL/g for Fe-PC. The removal efficiency of dimethyl sulfide of Fe-TCPC and Fe-PC in batch experiment of 225 ppm of initial concentration were 44.9% and 28.9%, respectively. The removal efficiency of trimethyl amine of Fe-TCPC and Fe-PC in batch experiment of 118 ppm of initial concentration were approximately 100.0% and 33.9%, respectively.