• 제목/요약/키워드: Carbothermal Reduction Nitridation

검색결과 15건 처리시간 0.024초

알루미나 수화물로부터 탄소환원질화법에 의한 질화알루미늄 분말의 합성 (Synthesis of Aluminum Nitride Powder from Aluminum Hydroxide by Carbothermal Reduction-Nitridation)

  • 황진명;정원중;최상욱
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.893-901
    • /
    • 1994
  • In this study, AlN powder of fine particle size and of high purity was synthesized by the carbothermal reduction-nitridation of monodisperse, spherical Al(OH)3 which had been prepared by sol-gel method using Al(O-sec-C4H9)3 as the starting material. Depending on the mixing order and kinds of reducing agents, the optimum condition for the preparation of AlN was determined as follows. AlN single-phase was produced by the carbothermal reduction-nitridation of (1) Benzene-washed Al(OH)3 and the reducing agent, carbon, which was mixed in a ball mill: for 5 hours at 140$0^{\circ}C$ under NH3 atmosphere; (2) The mixture prepared by hydrolysis of alkoxide solution into which carbon had been dispersed beforehand: for 5 hours at 135$0^{\circ}C$ ; (3) Al(OH)3 Poly(furfuryl alcohol) composite powder: for 2.5 hours at 135$0^{\circ}C$; (4) The mixture of Al(OH)3 and polyacrylonitrile: for 5 hours at 140$0^{\circ}C$. Addition of CaF2 increased the nitridation rate when carbon or polyacrylonitrile was used as the reducing agent; but it had no effect on the nitridation rate when furfuryl alcohol was used as the reducing agent.

  • PDF

Synthesis and characterization of AlN nanopowder by the microwave assisted carbothermal reduction and nitridation (CRN)

  • Chun, Seung-Yeop;Chun, Myoung-Pyo
    • 한국결정성장학회지
    • /
    • 제27권5호
    • /
    • pp.223-228
    • /
    • 2017
  • Aluminum nitride (AlN) powder was successfully synthesized at low temperature via carbothermal reduction and nitridation (CRN) assisted by microwave heating. The synthesis processes of AlN powder were investigated with X-ray diffraction, FE-SEM, FT-IR and TGA/DSC. Aluminum nitrate was used as an oxidizer and aluminum source, urea as fuel, and glucose as carbon source. These starting materials were mixed with D.I water and reacted in a flask at $100^{\circ}C$ for 20 minutes. After the reaction was finished, black foamy intermediate product was formed, which was considered to be an amorphous $Al_2O_3$ particles through intermediate product obtained by solution combustion synthesis (SCS) at the results of X-ray diffraction patterns and FT-IR. This intermediate product was nitridated at temperatures of $1300^{\circ}C$ and $1400^{\circ}C$ in $N_2$ atmosphere by a microwave heating furnace and then decarbonated at $600^{\circ}C$ for 2 hours in air. It should be noticed from FE-SEM images that as nitridated particles, identified as AlN from X-ray diffraction patterns, are covered with carbon residues. After decarbonating the nitridated powders, the spherical pure AlN powders were obtained without alumina and their particle sizes were dependent on the nitridating temperature with high temperature of $1400^{\circ}C$ giving large particles of around 70~100 nm.

전기방사에 의한 섬유상 질화알루미늄 합성 및 특성 평가 (Synthesis and Characterization of Fiberous AlN by Electrospinning)

  • 전승엽;황진아;주제욱;전명표
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.441-446
    • /
    • 2017
  • Aluminum nitride fibers were synthesized by carbothermal reduction and nitridation of precursor fibers obtained by electrospinning. The starting materials used to synthesize the AlN fibers were $Al(NO_3)_3{\cdot}9H_2O$ and urea. Polyvinylpyrrolidone with increasing viscidity was used as the carbon source to obtain a composite solution. The mixed solution was drawn into a plastic syringe with a stainless steel needle, which was used as the spinneret and connected to a 20 kV power supply. A high voltage was supplied to the solution to facilitate the formation of a dense net of fibers on the collector. The precursor fibers were dried at $100^{\circ}C$ and then heated to $1,400^{\circ}C$ for 1 h in a microwave furnace under $N_2$ gas flow for the carbothermal reduction and nitridation. X-ray diffraction studies indicated that the synthesized fibers consisted of the AlN phase. Field emission scanning electron microscopy studies indicated that the diameter of the calcined fibers was approximately 100 nm.

알콕사이드와 사이알론 합성에 관한 연구 (A Study on the Synthesis of Alkoxides and Sialon)

  • 하호;이희철
    • 대한화학회지
    • /
    • 제32권3호
    • /
    • pp.267-275
    • /
    • 1988
  • $Al(OC_3H_7)_3$$Si(OC_2H_5)_4$, 알콕사이드를 합성하고 그 물질을 각각 또는 혼합가수분해하여 $Al_2O_3,\;SiO_2,\;Al_2O_3-SiO_2$계의 물질을 얻고 $Al_2O_3-SiO_2$계에 환원제로서 carbon black을 혼합하여 $N_2$분위기에서 환원질화반응시켜 고순도의 ${\beta}-sialon$ 초미분말을 합성하였다. 가수분해 과정에서는 반응조건이 가수분해반응에 미치는 영향을 알아보았고, 환원질화반응 과정에서는 중간생성물을 분석하여 반응경로를 추정하고 ${\beta}-sialon$의 생성반응에 대한 동력학적 고찰을 하였다.

  • PDF

고연색 LED용 적색 Sr2Si5N8:Eu2+ 형광체의 합성 및 발광특성 연구 (Synthesis and Luminescence of Sr2Si5N8:Eu2+ Red Phosphor for High Color-Rendering White LED)

  • 이성훈;김종수;강태욱;류종호;이상남
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.11-15
    • /
    • 2017
  • Red phosphors, $Sr_2Si_5N_8:Eu^{2+}$, were synthesized as a single-phase crystal structure by optimizing carbon and $Eu^{2+}$ contents in a carbothermal reduction nitridation method. With increasing $Eu^{2+}$ contents, the photoluminescence spectra were red-shifted from 600 nm peak for 1 mol% for to 700 nm for 7 mol%. It was suggested that this red shift is attributed to the energy transfer from one low-energy sited $Eu^{2+}$ (1) to other high-energy sited $Eu^{2+}$ (2). Finally, the best red sample (620 nm emission peak and 80 nm half width for 3 mole% of $Eu^{2+}$) was packaged on a Blue LED together with two additional green and yellow phosphors, the fabricated White LED showed a high color-rendering index of 90 and white color coordinates of x= 0.321 and y = 0.305.

  • PDF

Al2(SO4)3.18H2O로부터 AlN 분말의 합성: I. 침전법 (Synthesis of AlN Powder from Al2(SO4)3.18H2O: I. Precipitation Method)

  • 이홍림;송태호
    • 한국세라믹학회지
    • /
    • 제28권6호
    • /
    • pp.465-470
    • /
    • 1991
  • AlN powder was synthesized by carbothermal reduction and nitridation of aluminum hydroxides precipitated in 5∼11 pH range from Al2(SO4)3$.$18H2O aqueous solution. Nitridation reactivity of hydroxide, which depends on precipitation pH, reaction temperature and time, was examined by XRD analysis at 1200∼1350$^{\circ}C$ and compared with that of commercial ${\alpha}$-Al2O3. Hydroxides obtained at higher pH could be more easily nitridated and, considering DTA/TG and BET results, the reason seems to be specific surface area difference of reactants depending on the content of decomposed structural water and the transition rate from transition-Al2O3 to ${\alpha}$-Al2O3.

  • PDF

질소 분위기에서 (NH4)[Al(edta)]·2H2O 착물으로부터 질화알루미늄 분말 및 휘스커의 합성 (Synthesis of Aluminum Nitride Powers and Whiskers from a (NH4)[Al(edta)]·2H2O Complex under a Flow of Nitrogen)

  • 정우식
    • 한국세라믹학회지
    • /
    • 제39권3호
    • /
    • pp.272-277
    • /
    • 2002
  • 전구체로 ($NH_4)[Al(ethylenediaminetetraacetate)]{\cdot}2H_2O$ 착물을 이용한 수정된 열탄소환원질화법으로 질화알루미늄(AlN) 분말과 휘스커를 합성하였다. 이 분말은 질소분위기에서 별도의 환원용 탄소를 혼합하지 않고 1200$^{\circ}$C에서 1500$^{\circ}$C까지의 온도에서 하소시킨 다름 잔류탄소를 태워 버림으로써 얻어졌다. 이 질화과정을 Al-27 마법각 스핀 핵자기공명, 적외선 분광법 및 X-선 회절법으로 연구했다. 전구체 착물은 열분해되어 ${\rho}$-알루미나와 ${\gamma}$-알루미나로 되었다가 ${\gamma}-{\alpha}$알루미나 전이없이 AlN으로 바뀌었다. ${\gamma}$-알루미나가 AlN으로 바뀌면서 분말의 형상이 유지되는 것으로 보아 이 변환과정에서의 중간체는 알루미늄이나 aluminum suboxides와 같은 기체상이 아니고, 고체상의 $AlO_xN_y$임을 알 수 있다. (0001) 사파이어를 이용하면 AlN 휘스커를 합성할 수 있다.

카올린으로부터 조성이 다른$\beta$다-Sialon의 합성 (Synthesis of $\beta$다-Sialon with Various Compositions from Kaolin)

  • 최상욱;서규식;이종진
    • 한국세라믹학회지
    • /
    • 제23권5호
    • /
    • pp.17-24
    • /
    • 1986
  • β'-Sialon with different compositions was synthesized by the carbothermal reduction-nitridation of compacts containing kaolin graphite and silicon or aluminum at temperature of 1300-1450℃ under flowing gas of 90% N2-10% H2 or 20hrs. Quantitative analysis of minerals which were formed in the specimens was carried out by using the calibration curve which has been prepared from X-ray diffraction patterns. The obtained results were as follows : 1. In the formation of β'-Sialon by carbothermal reduction-nutridation of Si-Al-O-C system mixtures at 1400℃ for 20hrs. (2) β'-Sialon as a major mineral and α-Al2O3 as a minor mineral were identified in the specimen which was prepared of kaolin and graphite. (3)α-Al2O3 and 15R as a minor minerals were measured in the specimen which was prepared of kaolin aluminum and graphite. (4) AlN instead of α-Al2O3 and 15R was formed in the compacts that excess graphite(=35 wt%) was added to the mixture of kaolin and aluminium. 2. As the reaction time and temperature were increased the formation of β'-Sialon was increased whereas the phases of mllite SiC and Si2ON2 were decreased gradually.

  • PDF

다공질유리의 탄소 열적환원반응에 의한 Sialon의 합성에 관한 연구 (Synthesis of Sialon by Carbothermal Reduction of Porous Glass)

  • 김병호;이덕열;김왕섭;전형우;이근헌
    • 한국세라믹학회지
    • /
    • 제26권6호
    • /
    • pp.771-782
    • /
    • 1989
  • Synthesis of $\beta$-Sialon powder was attempted with carbothermal reduction of porous glass. The porous glass was prepared by heat and hydrothermal treatments of 9.32 Li2O.46.5B2O3.37.2SiO2.6.98Al2O3 glass. Carbon pyrolyzed from propane gas was deposited on the porous glass, thereafter activated carbon was added as reducing agents. The synthesized $\beta$-Sialon powder was pressureless sintered at 175$0^{\circ}C$ for 1hr in N2 atmosphere. The characterization of the $\beta$-Sialon powder was performed with XRD, BET, SEM and particle size analysis. The sinterability and mechanical properties of the sintered bodies were investigated in terms of bulk density, M.O.R., fracture toughness, morphology of microstructure and etc. The reduction effect of deposited carbon was better than that of activated carbon mechanically added. The formation of SiC was precominant over that of Si2ON2 and $\beta$-Sialon owing to low partial pressure of N2 inside the pore, wehreas on the surface of porous glass the formation of Si2ON2 and $\beta$-Sialon were predominant. Thereafter, SiC reduced unreacted glass to be $\beta$-Sialon. Single phase of $\beta$-Sialon(Z=1.92) was obtained from PGA porous glass having the largest pore radius by the simultaneous reduction and nitridation method at 145$0^{\circ}C$ for 5hrs. The bulk density, M.O.R., and KIC of the sitered body are 3.17g/cc, 434.4MPa and 4.1MPa.m1/2, respectively.

  • PDF

$Al_2(SO_4)_3.18H_2O$로부터 AlN 분말의 합성: II. 탈산화 효과 (Synthesis of AlN Powder from $Al_2(SO_4)_3.18H_2O$: II. Deoxidation Effect)

  • 송태호;이홍림
    • 한국세라믹학회지
    • /
    • 제29권6호
    • /
    • pp.471-479
    • /
    • 1992
  • AlN powder was synthesized by carbothermal reduction and nitridation using Al2(SO4)3.18H2O as the starting material. The synthesized AlN powder was fine but contained oxygen. Therefore carbonaceous material (carbon black or phenol novolac) was added teogether with the sintering aids (CaO, CaF2, CaCl2, Y2O3 and YF3). It was found that pressureless sintering at 1700~180$0^{\circ}C$ after deoxidation at 150$0^{\circ}C$ suppressed the formation of second phase (27R) and reduced the contents of lattice oxygen within AlN ceramics.

  • PDF