• Title/Summary/Keyword: Carbonyl group

Search Result 330, Processing Time 0.022 seconds

$^{13}C$nmr Studies on the Interaction of Lithium Salts to Formamide, Acetamide and Propionamide Systems (Formamide, Acetamide 및 Propionamide계에 대한 리튬염의 상호작용에 관한 $^{13}C$ nmr 연구)

  • Dae-Ho Shin;Jo W. Lee;Young Sang Choi
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.291-295
    • /
    • 1982
  • $^{13}C$resonances of carbonyl and various alkyl groups in amides are found to shift down-field on the interaction with lithium salts and it is shown that lithium ion binds directly to the carbonyl group in amides. The magnitudes of the $^{13}C$ chemical shifts of various amides depend not only on the size of alkyl groups in amides but also on the interaction with anion. The change of $^{13}C$chemical shift of amide in LiCl is smaller than that in$LiClO_4$ due to the difference of the charge density of the anion.

  • PDF

Studies on the Electrochemical Properties for Rancidity of Linoleic Acid (리놀산의 산패에 대한 전기화학적 특성 연구)

  • 김우성;이송주
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.360-364
    • /
    • 2000
  • We studied the degree of rancidity of linoleic acid for the electrochemical redox reaction in time course and the kinetic parameters. The current of the linoleic acid was increased and the potential was shifted to the positive potential when scan rates were faster. The redox reaction of the linoleic acid was proceeding to totally irreversible and diffusion controlled reaction. From these results, diffusion coefficient(D$\_$o/) of linoleic acid was observed to 2.61$\times$10$\^$-6/ ㎠/s in the 0.1 M TEAP/DMF electrolyte solution. Also, exchange rate constant(K$\^$o/) was observed to 9.79$\times$10$\^$-11/ cm/s. The leaving time in air condition was found to affect the rancidity. We predicted that the product was carbonyl compounds.

  • PDF

Antioxidant Effects of Elsholtzia splendens Extract on DMBA-induced Oxidative Stress in Mice

  • Choi, Eun-Jeong;Kim, Tae-Hee;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1341-1344
    • /
    • 2008
  • The present study was conducted to investigate the effects of flowers ethanol extract of Elsholtzia splendens (ESE) on the antioxidant defence system in mice with 7,12-dimethylbenz(a)anthracene (DMBA)-induced oxidative stress. The ESE was pre-administered orally to 2 groups of mice at 10 and 50mg/kg body weight (BW) for 5 weeks. Subsequently, mice with pretreatment of ESE received DMBA intragastrically at a dose of 34 mg/kg BW twice a week for 2 weeks. In DMBA alone group, biomarkers of oxidative stress (TBARS value, carbonyl content, and serum 8-OH-dG) were significantly increased. Also, the antioxidant enzymes were down-regulated. ESE significantly restored the TBARS value and carbonyl content at both doses, while a decrease in the elevated serum 8-OH-dG content was observed only at the higher dose. The DMBA-induced decreases in catalase and superoxide dismutase (SOD) activities were restored to nearly control levels by ESE. Glutathione peroxidase (GSH-px) and glutathione reductase (GR) activities, as well as the reduced glutathione (GSH)/oxidized GSH (GSSG) ratio, were significantly affected by ESE at the higher dose. These results suggest that ESE possesses antioxidant activity, which plays a protective role against DMBA-induced oxidative stress.

A Study on the Characteristics of Humic Materials Extracted from Decomposing Plant Residues -I. Chemical Properties of Humic Acids from Plant Residues Characterized by IR Spectra (식물성(植物性) 유기물질(有機物質)의 부숙과정중(腐熟過程中) 부식특성(腐植特性)에 관(關)한 연구(硏究) -1. 분광분석(分光分析)에 의(依)한 식물잔해(植物殘骸) 부식산(腐植酸)의 화학적(化學的) 성질규명(性質糾明))

  • Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.251-259
    • /
    • 1987
  • Humic acids extracted from decomposing plant residues were characterized by infrared(IR) spectra. The IR spectra were further interpreted by chemical analyses for oxygen-containing functional groups such as carboxyl, phenolic, alcoholic, carbonyl, and quinionic groups. 1. The IR spectra obtained in this study were divied into three categories: spectra of humic acids from grain crop straws of rice, barley, wheat and rye produced Type I, while that from wild grass hay yielded Type II, and those from forest tree litter of the deciduous and conifers were led to give Type III. 2. There were no significant changes in the absorption bands observed among humic acids extracted at various stages of decomposition of a given Plant material. 3. The absorption band at about $3,430cm^{-1}$ represents the presence of hydrogen-bonded hydroxyl groups, phenolic-OH groups being the major component. 4. A close relationship was found between the total acidity and the content of phenolic-OH groups of humic acids. The content of carboxyl groups maintains a direct relationship with the content of total hydroxyl groups, and such a close relationship also exists between the content of alcoholic hydroxyls and that of total hydroxyl groups. 5. Overlapping of the absorption bands of carbonyl groups and quinones renders it difficult to make differentiation between the two. 6. A variety of non-armoatic cyclic hydrocarbons appears to be a structural component as evidenced by a sharp absorption peak near $995-1000cm^{-1}$.

  • PDF

A Spectroscopic Study of Hydrogen Bonding between Riboflavin and Salicylic Acid Derivatives

  • Huh, Jae-Wook;Yu, Byung-Sul
    • YAKHAK HOEJI
    • /
    • v.20 no.3
    • /
    • pp.130-137
    • /
    • 1976
  • Specific association phenomena of riboflayin-2',3',4',5',- tetraacetate and salicylic acid derivatives, such as salicylic acid, aspirin and salicylamide have been measured by infrared and fluorescence spectroscopy. Salicylic acid and riboflavin tetraacetate oxyl group of the former. Asprin and riboflavin tetraacetate form the 1:1 cyclic hydrogen bonded dimer by the same mode. Salicylamide froms the 1:1 cyclic hydrogen bonded dimer with riboflavin tetraacetate by using its amide group and carbonyl group. Salicylic acid derivatives are effective quenchers of the fluorescence of riboflavin tetraacetate. It is appeared that salifylamide is the strongest quencher among them. The quenching effect is attributed to the formation of association dimer.

  • PDF

Chemical Properties of Semiconductive Shield (반도전 재료의 화학적 특성)

  • Ahn, Jong-Hyun;Kim, Hyang-Kon
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.203-206
    • /
    • 2008
  • To improve mean-life and reliability of power cable in this study, we have investigated chemical properties showing by changing the content of carbon black that is semiconductive additives for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Chemical properties of specimens was measured by FT-ATR (Fourier Transform Attenuated Total Reflectance). The condition of specimens was a solid sheet. We could observe functional group (C=O, carbonyl group) of specimens through FT-ATR. From these experimental result, the concentration of functional group (C=O) was high according to increasing the content of carbon black. We could know EEA was excellent more than other specimens from above experimental results.

  • PDF

The Mechanism : Hydrolysis of Formamide

  • Baek, Yong-Su;Choe, Cheol-Ho
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.91-98
    • /
    • 2015
  • Formamide의 중성가수분해 mechanism은 QM/MM (quantum mecahnics/molecular mechanics) molecular dynamics simulations 및 CPMD과 같은 방법으로 연구되어왔다. 본 연구에서는. Umbrella sampling을 이용한 QM/MM-MD simulation을 사용하여 4가지 반응의 free energy surface를 도출해냈다. 전체적으로, 가장 선호되는 메커니즘은 two step으로 구성된 water assisted stepwise mechanism이었으며 모든 mechanism은 ab-initio calculation과 QM/MM-MD simulation이 수행되었다. water assisted stepwise mechanism을 살펴보면, 첫 번째 step에서 formamide의 carbonyl group이 hydrate되면서 gem-diol intermediate를 형성한다. 다음 step에서, intermediate의 hydroxyl group으로부터 amino group으로 water-assisted proton transfer이 일어난다. 두 반응 모두에서 물이 proton transfer를 직접적으로 도와주는 것을 관찰할 수 있었다. 특히, ab-initio calculation과는 다르게 QM/MM-MD에서는 gem-diol intermediate가 안정화되는 것으로 solvent effect를 잘 보여준다.

  • PDF

Association of Riboflavin and Drug Molecules (Riboflavin과 약품 분자와의 회합)

  • 유병설
    • YAKHAK HOEJI
    • /
    • v.28 no.2
    • /
    • pp.101-127
    • /
    • 1984
  • The study of interaction between riboflavin derivatives and biologically active substances was reviewed. With combination of spectroscopic methods such as NMR, UV, Fluorescence and IR, informations about interaction mechanism including hydrogen bond formation, conformation of association complex, and association constant were obtained. 1. Riboflavin associated with adenine but not with other bases found in the nucleic acids. -CONHCO- group was included in the formation of hydrogen bond with adenine. 2. Riboflavin interacted with alcohol to make a 1 : 1 association complex through the 3N-imino and 2C-carbonyl group of the isoalloxazine ring and the hydroxyl group of the alcohols. 3. Riboflavin associated with salicylates to produce the cyclic hydrogen-bonded dimer. The strongest complex was formed with salicylic acid, a weaker one with aspirin, and an even weaker one with salicylamide. 4. Other bio-active substances, orotic acid and inhibitors such as phenol, trichloroacetic acid and indol also formed hydrogen bond with riboflavin. 5. Reduced riboflavin showed strong self-association to produce the cyclic hydrogen-bonded complex and it associated with adenine and with cytosine to form 1 : 3 complex.

  • PDF

Chemical Properties of Semiconductive Shield in Power Cable by FT-ATR (FT-ATR을 사용한 전력케이블내 반도전 재료(층)의 화학적 특성)

  • Lee, K.Y.;Choi, Y.S.;Nam, J.C.;Park, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.117-119
    • /
    • 2004
  • To improve mean-life and reliability of power cable in this study, we have investigated chemical properties showing by changing the content of carbon black that is semiconductive additives for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Chemical properties of specimens was measured by FT-ATR (Fourier Transform Attenuated Total Reflectance). The condition of specimens was a solid sheet. We could observe functional group (C=O, carbonyl group) of specimens through FT-ATR. From these experimental result, the concentration of functional group (C=O) was high according to increasing the content of carbon black. We could know EEA was excellent more than other specimens from above experimental results.

  • PDF

Conformational Studies of Sulfonylurea Herbicides : Bensulfuron Methyl and Metsulfuron Methyl

  • Young Kee Kang;Dae Whang Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.144-149
    • /
    • 1990
  • Conformational free energy calculations using an empirical potential function (ECEPP/2) and the hydration shell model were carried out on the sulfonylurea herbicides of bensulfuron methyl (Londax) and metsulfuron methyl (Ally). The conformational energy was minimized from starting conformations which included possible combinations of torsion angles in the molecule. The conformational entropy of each conformation was computed using a harmonic approximation. To understand the hydration effect on the conformation of the molecule in aqueous solution, the hydration free energy of each group was calculated and compared each other. It was found that the low-free-energy conformations of two molecules in aqueous solution prefer the overall folded structure, in which an interaction between the carbonyl group of ester in aryl ring and the first amido group of urea bridge plays an important role. From the analysis of total free energy, the hydration and conformational entropy are known to be essential in stabilizing low-free-energy conformations of Londax, whereas the conformational energy is proved to be a major contribution to the total free energy of low-free-energy conformations of Ally.