• Title/Summary/Keyword: Carbonized Cast

Search Result 4, Processing Time 0.02 seconds

Adsorption Characteristics of Benzene by Carbonized Cast (탄화분변토를 이용한 Benzene의 흡착특성)

  • 김재홍;손희정;김미룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.97-102
    • /
    • 1999
  • This study was carried out view that reuse of sludge of adsorbent for benzene in carbonized cast compare with activated carbon. Not only the carbonized cast is good than carbonized carbon in cation exchange capacity and 12 adsorption capacity, but also benzene adsorption capacity is no differences compare to activated carbon. As results, benzene adsorption capacity of carbonized cast and activated carbon are decreased as temperature increase($25~70^{\circ}C$).It is compatible in Lamgmuir model. Therefore, carbonized cast is applied general adsorbent. From experimental results and data regression, in model concerning effect of temperature, relative errors between the experimental data and those calculated by the model are within the range of 1.2~7.8%. In relative humidity effect (RH 0.25~0.50) of benzene adsorption, modified Freundlich model : $QB_{enzene}{;\}QB_{enzene},{\}_{RH=0}=1-kRH^{IN}$, relative errors between the experimental data and those calculated by the model are within are range of 0.5-5.1%. The constants k and l/n in equation were found to be 1.25, 1.89 in carbonized cast.

  • PDF

A Fundamental Study on the Application of Cast for Removal of VOCs Produced in the Oil-contaminated Soil (유류오염 토양에서 발생되는 VOCs 제거를 위한 분변토의 활용 가능성에 관한 기초연구)

  • Son, Hee-Jeong;Chun, Mi-Hee;Kim, Chul
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.456-461
    • /
    • 2007
  • This study was carried out two point view that reuse of sludge and adsorption of benzene, toluene and o-xylene of VOCs in cast, carbonized cast and activated carbon. The cation exchange capacity of cast and carbonized cast were 59.2, 112 meq/100g, respectively. The specific surface were 560, $800m^2/g$, respectively. The average removal rates of benzene by 50g cast of 50% hydrous cast, anhydrous cast, carbonized cast, activated carbon were 15.0, 41.2, 88.2, 99.4% in 60min of retention time. The average removal efficiency of toluene by 50 g cast of 50% hydrous cast, anhydrous cast, carbonized cast, activated carbon were 12.5, 34.2, 88.2, 99.5% in 60 min of retention time. The average removal rates of o-xylene 50 g cast of 50% hydrous cast, anhydrous cast, carbonized cast, activated carbon were 8.8, 28.5, 84.8, 98.1% in 60min of retention time. The adsorption efficiency of test absorbent was in order of Activated Carbon > Carbonized Cast > Cast.

Microstructure investigation of iron artifacts excavated from Kkonmoe relic located in Suwon-si (수원시 꽃뫼 유적 출토 철제유물의 미세조직 분석)

  • Yu, Jae-Eun;Go, Hyeong-Sun;Lee, Jae-Sung
    • 보존과학연구
    • /
    • s.23
    • /
    • pp.131-147
    • /
    • 2002
  • Kkonmoe relic located in Jangan-gu, Suwon-si, Gyeonggi-do Provinceis an example of the wide chronology from the Three Kingdoms Period to Joseon Dynasty. Examinations on a forged iron ax, a cast iron ax and an iron sickle excavated from this relic revealed the microstructure structure of the metal and the manufacturing technologies. Microstructure investigation was carried out with a metallurgical microscope and a Vickers hardness tester was used to measure the hardness of the micro structures. The test results show that the forged iron ax has a ferrite and pearlitestructure. It is made of low carbon steel and then carbonized to increase carbon content. After carbonization, the surface grains are reworked and the surface decarbonized. In case of the iron sickle, it is forged from low carbon steel, then carbonized and hardened, to increase overall strength. The sickle blade is carbonized and quenched after forging, resulting in afirm, solid blade. Heat treatment to remove brittleness is not applied to the cast ironartifact, which is manufactured by solidifing hypo-eutectic cast iron with a3-4% carbon content and white cast iron. All artifacts are produced from steel and subjected to a carbonization process. To increase hardness of the blade, additional heat treatment is applied.

  • PDF

Synthesis of a Triblock Copolymer Containing a Diacetylene Group and Its Use for Preparation of Carbon Nanodots

  • Kim, Beom-Jin;Oh, Dong-Kung;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.103-107
    • /
    • 2008
  • Carbon nanodots were prepared by the pyrolysis of a triblock copolymer. The triblock copolymer, poly(methyl methacrylate)-b-polystyrene-b-poly(methyl methacrylate) was synthesized by atom transfer radical polymerization using an initiator containing a diacetylene group. A polymer thin film on a mica substrate was prepared by spin-casting at 2,000 rpm from a 0.5 wt% toluene solution of the triblock copolymer. After drying, the cast film was vacuum-annealed for 48 h at $160^{\circ}C$. The annealed film formed a spherical morphology of polystyrene domains with a diameter of approximately 30 nm. The film was exposed to UV irradiation to induce a cross-linking reaction between diacetylene groups. In the subsequent pyrolysis at $800^{\circ}C$, the cross-linked polystyrene spheres were carbonized and the poly(methyl methacrylate) matrix was eliminated, resulting in carbon nanodots deposited on a substrate with a diameter of approximately 5 mn.