• Title/Summary/Keyword: Carbonization Characteristics

Search Result 164, Processing Time 0.022 seconds

Preparation of Zirconium Carbide Powders from $ZrCl_4$-Mg-C System ($ZrCl_4$-Mg-C 계 반응에 의한 탄화지르코늄(ZrC) 분체의 합성)

  • 김원영;김성현;장윤식;박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.315-323
    • /
    • 1991
  • The preparation of zirconium carbide powders by the halogenide process of ZrCl4-C-Mg system (1:1:2, molar ratio) was studied between 300。 and 120$0^{\circ}C$ under Ar gas flow (200 mι/min). The formation mechanism and kinetics of zirconium carbide and characteristics of the synthesized powder were examined by TG-DTA, XRD, SEM and PSA. 1) The formation mechanism of zirconium carbide were as follows, above 30$0^{\circ}C$ ZrCl4(S)+Mg(s)longrightarrowZrCl2(s)+MgCl2(s) above 40$0^{\circ}C$ ZrCl2(S)+Mg(s)longrightarrowZr(s)+MgCl2(s) above 50$0^{\circ}C$ Zr(s)+C(s)longrightarrowZrC(s) 2) The apparent activation energy of the reduction-carbonization at temperature of 800$^{\circ}$to 100$0^{\circ}C$ was 11.9 kcal/mol. 3) The lattice parameter and the crystallite size of ZrC which was produced from the mixture powder of ZrCl4, C and Mg (1:1:2, molar ratio) at 100$0^{\circ}C$ for 1 h were 4.700A and 180A, respectively. 4) The powders obtained from the mixture powder of ZrCl4, C and Mg(1:1:2, molar ratio) at 100$0^{\circ}C$ for 1 h were agglomerate with the average size of about 13${\mu}{\textrm}{m}$ in SEM micrograph.

  • PDF

Influence of Heating Rate and Temperature on Carbon Structure and Porosity of Activated Carbon Spheres from Resole-type Phenolic Beads

  • Singh, Arjun;Lal, Darshan
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • Activated carbon spheres (ACS) were prepared at different heating rates by carbonization of the resole-type phenolic beads (PB) at $950^{\circ}C$ in $N_2$ atmosphere followed by activation of the resultant char at different temperatures for 5 h in $CO_2$ atmosphere. Influence of heating rate on porosity and temperature on carbon structure and porosity of ACS were investigated. Effect of heating rate and temperature on porosity of ACS was also studied from adsorption isotherms of nitrogen at 77 K using BET method. The results revealed that ACS have exhibited a BET surface area and pore volume greater than $2260\;m^2/g$ and $1.63\;cm^3/g$ respectively. The structural characteristics variation of ACS with different temperature was studied using Raman spectroscopy. The results exhibited that amount of disorganized carbon affects both the pore structure and adsorption properties of ACS. ACS were also evaluated for structural information using Fourier Transform Infrared (FTIR) Spectroscopy. ACS were evaluated for chemical composition using CHNS analysis. The ACS prepared different temperatures became more carbonaceous material compared to carbonized material. ACS have possessed well-developed pores structure which were verified by Scanning Electron Microscopy (SEM). SEM micrographs also exhibited that ACS have possessed well-developed micro- and meso-pores structure and the pore size of ACS increased with increasing activation temperature.

Mirror Surface Grinding Characteristics and Mechanism of Carbon Fiber Reinforced Plastics (탄소섬유강화 플라스틱의 경면연삭가공 특성)

  • 박규열;이대길;중천위웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2514-2522
    • /
    • 1994
  • The mirror surface grinding of carbon fiber reinforced plastics(CFRP) was realized by using the metal bonded super-abrasive micro grain wheel with electrolytic in-process dressing(ELID). The maximum surface roughness $R_{max}$ of CFRP which was obtained with #6,000 wheel, was 0.65 $\mu{m}$, which was rougher surface finish compared to those of hard and brittle materials with the same mesh number wheel with ELID. The grinding performance was much dependent on the grinding direction and the best surface roughness was obtained at $90^{\circ}C$ grinding with fiber direction. The spark-out effect on the surface improvement was significant when smaller mesh number grinding wheels were used. From the surface observations of CFRP with scanning electron microscope(SEM) and Auger electron spectroscopy(AES), it was found that the mirror surface grinding of CFRP was generated by the homogenization due to carbonization of the ground surface and smearing of chips composed of the carbon fiber and carbonized epoxy resin into the ground surface.

Quality Comparison of Activated Carbon Produced From Oil Palm Fronds by Chemical Activation Using Sodium Carbonate versus Sodium Chloride

  • MAULINA, Seri;HANDIKA, Gewa;Irvan, Irvan;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.503-512
    • /
    • 2020
  • Using Na2CO3 versus NaCl as chemical activator, we compared the quality of activated carbon produced from oil palm fronds as raw material. These activators were selected for comparison because both are readily available and are environmentally friendly. In the manufacturing, we used Indonesian National Standard (SNI 06-3730-1995) parameters. For the quality comparison, we determined activated-carbon yield, moisture, ash, volatiles, and fixed-carbon contents; and adsorption capacity of iodine. The best characteristics, assessed by morphological surface analysis and Fourier transform infrared (FTIR) spectral analysis, were observed in the carbon activated by Na2CO3 at an activator concentration of 10% and carbonization temperature of 400 ℃. The results were as follows: activated-carbon yield, 84%; water content, 8.80%; ash content, 2.20%; volatiles content, 14.80%; fixed-carbon content, 68.60%; and adsorption capacity of iodine, 888.51 mg/g. Identification using the FTIR spectrophotometer showed the presence of the functional groups O-H, C=O, C=C, C-C, and C-H in the Na2CO3-activated carbon.

Gas Permeation Characteristics of the Prepared SiC Membrane through Polyimide Carbonization Treatmemt (폴리이미드의 탄화 처리에 의한 SiC 분리막의 가스투과 특성)

  • Choi, Ho-Sang;Hwang, Gab-Jin;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.66-70
    • /
    • 2005
  • For the application in HI decomposition reaction of thermochemical water-splitting IS process, the carbonized membranes using the polymer material (polyimide) were prepared, and SiC membrane was also prepared by SiO treatment on those carbonized membranes. The weight change by the carbonation of polyimide was about 50%, and the weight decreased with an increase of carbonation temperature. The gas permeance ($H_2$ or $N_2$) of carbonized membrane decreased with an increase of carbonation temperature led to the pore closing. The gas permeance ($H_2$ or $N_2$) of SiC membrane increased with an increase of SiO treatment concentration, and the gas permeation mechanism was changed from the activiation energy flow to Knudsen flow.

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling, were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories, C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth process). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

Manufacture of High Density Graphite Using Coal Tar Pitch (석탄계 피치를 이용한 고밀도 흑연 제조)

  • Cho, Kwang-Youn;Kim, Kyung-Ja;Riu, Doh-Hyung;Lim, Kwang-Hyun;Kim, Jung-Il;Shin, In-Cheol;Lim, Yun-Soo;Joo, Heyok-Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.839-845
    • /
    • 2006
  • Graphite has hexagonal closed packing structure with two bonding characteristics; (1) van der waals bonding between c axis, and (2) covalent bonding in the a and b axis. The weak van der waals bonds cause self-lubricant property, and the strong covalent bonds cause excellent electric and thermal conductivity. Furthermore, graphite is chemically very inert because of the material composed of only carbon elements. Thus, graphite is very useful for mechanical sealing materials. However, Graphite have porous microstructure because starting materials of graphite produce many volatile during the manufacturing processes. This causes low density of graphite, which is unsuitable for the mechanical sealing materials. Thus, further impregnation process is generally needed to enhance the graphite density. In this work, high density graphite is prepared with the principle of densification when coke and pitch binder, prepared from thermal treatment of coal tar pitch, become dehydrogenation during graphitization or carbonization.

MODELLING OF PYROLYSIS PROCESSES OF POLYACRYLONITRILE

  • Lipanov, A.M.;Kodolov, V.I.;Ovchinnikova, L.N.;Savinsky, S.S.;Khokhriakov, N.V.;Sarakula, V.L.
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.112-119
    • /
    • 1997
  • The modelling of carbon substances obtaining, for instance, carbon fibers which have high fire resistance, has been realized on the example of the polyacrylonitrile pyrolysis modelling. The pyrolysis is considered as a double step process when the formation of a liquid phase and the oxidation of substance are excluded. Three main reactions are considered: a) with the evolution of ammonia; b) with the evolution of hydrogen cyanide; c) with the evolution of hydrogen. Reactions b) and c) are sequential, and a) and b) are parallel. The problem is formulated as one-dimensional. The equations of energy, masses or concentrations, porosity and thermal conductivity are proposed. The mathematical model of the carbonization process is designed using tile kinetic characteristics of the above reactions and the thermodynamic parameters of reagents and products in these reactions. The equations received are calculated by Runge-Cutta method and by Adams method of the fourth order accuracy.

  • PDF

Flame Retardant Properties of Cotton Fiber with Phosphoric/citric Acid Catalysts and TiO2 (인산/구연산 복합 산촉매 및 이산화티타늄을 적용한 면섬유의 난연 특성)

  • Yang, Heejin;Kim, Samsoo;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.238-249
    • /
    • 2021
  • In this study, the effect on flame retardancy and various physical properties when TiO2 was added with a citric acid/phosphate complex acid catalyst together with Pyrovatex CP new (N-methylol dimethylphosphonopropionamide), a phosphorus-based flame retardant, was studied on cotton fibers. SEM-EDS analysis was performed to confirm the surface characteristics and surface element analysis of the flame-retardant treated cotton fibers, and a vertical carbonization test was performed to confirm the char formation capability and flame retardancy according to the phosphoric acid ratio. By comparing the LOI index before and after washing 10 times, the washing durability of the flame retardant solution containing the phosphoric acid catalyst and TiO2 was tested by LOI index after ten washing cycles. In addition, the influence of the flame-retardant processing on the physical properties were compared including thermogravimetric analysis (TGA), tear strength and whiteness.

Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes (페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리)

  • Shin, Kyung-Yong;Park, You-In;Kim, Beom-Sik;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.312-319
    • /
    • 2010
  • Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.