• 제목/요약/키워드: Carbon-dioxide

검색결과 3,617건 처리시간 0.027초

임내 낙엽층의 연소 방출가스 분석 및 건강 위험성 평가 (Combustion Emission Gas Analysis & Hazard Assessment to the Litter Layer in Forest)

  • 김동현;이명보
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2009년도 춘계학술논문발표회 논문집
    • /
    • pp.358-364
    • /
    • 2009
  • 본 연구에서는 우리나라 주요 침엽수종인 소나무(Pinus densiflora)와 활엽수종인 굴참나무(Quercus variabilis)의 낙엽에 대해 FTIR(Fourier Transform Infrared) 분광계를 이용하여 배출 연소가스 종류 및 농도를 측정하였다. 실험결과 소나무와 굴참나무 낙엽에서 Carbon monoxide, Carbon dioxide, Acetic acid, Butyl acetate, Ethylene, Methane, Methanol, Nitrogen dioxide, Ammonia, Hydrogen Fluoride, Sulfur dioxide, Hydrogen bromide 등 13개 연소가스가 검출되었고 굴참나무 낙엽에서는 Nitrogen monoxide가 추가로 검출되었다. 방출된 연소가스의 전체 농도는 소나무 낙엽이 굴참나무 낙엽에 비해 4.5배 많이 검출되었다. 특히, 시간가중평균가스농도(TWA : Time-weighted average, ppm) 기준을 초과하는 연소가스는 Carbon monoxide, Carbon dioxide, Butyl acetate가 검출되었고 단시간노출기준(STEL : Short Term Exposure Limit, ppm) 기준을 초과하는 연소가스는 Carbon monoxide, Carbon dioxide로 소나무 및 굴참나무 모두에서 나타났다. 이에 산불에서의 낙엽층 지표화 연소시 전체 가스 방출량의 99% 이상을 차지하고 있는 Carbon monoxide, Carbon dioxide의 건강 위험성이 높은 것으로 나타났다. 하지만, 검출된 다른 건강 위험성 가스의 경우에도 연소물질의 양이 증가할수록 연소가스의 농도가 높아져 건강안정성에 해가 있을 것으로 판단되며 또한 검출된 연소가스 중 나무의 주요구성 원소가 아닌 Bromide, Fluoride 화합물에 대해서는 토양으로부터의 오염 또는 분석과정에서의 노이즈로 인한 검출 등에 대한 보다 면밀한 검토가 필요할 것으로 판단된다.

  • PDF

1-propanol 첨가에 따른 이산화타이타늄(TiO2) 광 촉매의 비표면적 향상 및 이산화탄소 환원 효율 향상 (Improvement of Carbon Dioxide Reduction Efficiency of Titanium Dioxide Photocatalyst Using 1-propanol)

  • 하윤태;권진범;안희경;정대웅
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.343-347
    • /
    • 2022
  • Recently, the problem of global warming caused by greenhouse gases is getting serious due to the development of industry and the increase in transportation means. Accordingly, the need for a technology to reduce carbon dioxide, which accounts for most of the greenhouse gas, is increasing. Among them, a catalyst for converting carbon dioxide into fuel is being actively studied. Catalysts for reducing carbon dioxide are classified into thermal catalysts and photocatalysts. In particular, the photocatalyst has the advantage that carbon dioxide can be reduced only by irradiating ultraviolet rays at room temperature without high temperature or additional gas. TiO2 is widely used as a photocatalyst because it is non-toxic and has high stability, but has a disadvantage of low carbon dioxide reduction efficiency. To increase the reduction efficiency, 1-propanol was used in the synthesis process. This prevents agglomeration of the catalyst and increases the specific surface area and pores of TiO2, thereby increasing the surface area in contact with carbon dioxide. As a result of measuring the CO2 reduction efficiency, it was confirmed that the efficiency of TiO2 with 1-propanol and TiO2 without 1-propanol was 19% and 12.3%, respectively, and the former showed a 1.5 times improved efficiency.

콘크리트 내 이산화탄소 확산계수 예측에 관한 연구 (Diffusivity of Carbon Dioxide in Concrete)

  • 오병환;정상화;이명규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.669-674
    • /
    • 2003
  • The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. The test results indicate that the diffusion coefficient increases with the increase of water-cement ratio. The diffusion coefficient decreases with the increase of relative humidity at the same water-cement ratio. The diffusion of carbon dioxide reached the steady-state within about five hours after exposure. It was found that the diffusion coefficient of cement paste is larger then that of concrete or mortar. The quantitative values of diffusivity of carbon dioxide in this study will allow more realistic assessment of carbonation depth in concrete structures.

  • PDF

환경보호와 목재의 이용 (Environmental Conservation and Wood Utilization)

  • 장상식
    • Journal of the Korean Wood Science and Technology
    • /
    • 제22권3호
    • /
    • pp.51-58
    • /
    • 1994
  • Environmental conservation has become one of the greatest concerns of all the people in the world. This issue is related to wood utilization in two major view points such as carbon dioxide emitted by the use of manufacturing energy and absorbed during the growth of trees. Wood construction materials require less manufacturing energy, which, in turn, means less carbon dioxide emission. In addition, wood keeps absorbed carbon in itself as far as it is not burnt. Therefore, wood is environmentally superior to other materials in terms of potential effects on atmospheric carbon dioxide. As examples of the environmental effect of wood utilization, the following two results were obtained: 1) If wood construction becomes popular in Korea as in Japan, more than 24% of carbon dioxide emission during construction of residential housings can be reduced: and 2) If aluminum windows are substituted by wood windows, more than 19% of carbon dioxide emission can be reduced. If the principle of "cut and plant" is kept well, wood is the best construction material for environmental protection as well as human residence.

  • PDF

건축재료의 이산화탄소 배출원단위 변화추이연구 (A Study on the Functional Unit Trend of Carbon Dioxide Emission in the Construction Materials between 2000, 2003 and 2005)

  • 이강희;이하식;양재혁
    • KIEAE Journal
    • /
    • 제10권5호
    • /
    • pp.123-129
    • /
    • 2010
  • This study aimed at analyzing the trend of carbon dioxide emission for direct and indirect areas by using inter industry relations table between 2000, 2003 and 2005 in the key building materials and components. Results of this study are as follows; First, the material and components for this study was selected in 20 industries of products such as sand, gravel, cement, concrete articles, rebar, and steel bar. Second, among the 20 selected key building materials, the group with the highest carbon-dioxide emission was shown in ready-mixed concrete, concrete articles, and primary aluminum goods. Third, as a result of analyzing the changes to the units of carbon dioxide emission according to passage of time, the number of items which is changed in such as sustained increase or decrease over time was insignificant in carbon-emission change trend.

정수처리에서 pH 저감에 의한 응집효율향상에 관한 연구 (Improving Coagulation Performance with pH Preadjustment in Drinking Water Treatment)

  • 이환;이철효;정창규;이윤진
    • 한국환경보건학회지
    • /
    • 제29권2호
    • /
    • pp.1-6
    • /
    • 2003
  • This paper reports on a pilot scale comparison of PACS coagulation with and without pH preadjustment. The pH of the water was adjusted with carbon dioxide and sulfuric acid. Process performance was assessed on the basis of total organic carbon(TOC), UV absorbance, turbidity and disinfection by-product(DBP) precursors. Coagulation pH appeared to be a determining factor for maximum NOM removal. The optimum coagulation pH in order to decrease TOC and turbidity were pH 7. Preadjustment of pH 7 increased TOC removal to as much as 43, 47 percent with sulfuric acid and carbon dioxide. Moreover, coagulation at pH 7 caused a reduction in UV$_{254}$, THMFP and HAAFP compared to the baseline coagulation. For preadjustment of pH 7 with carbon dioxide, the percentage of TOC, UV$_{254}$, THMFP and HAAFP shows the reduction rate of 3.8, 0.5, 4.8, 9.4% comparing to the coagulation rendition using sulfuric acid. Acid addition to depress pH during coagulation decrease Langelier Saturation Index(LSI), potentially causing increase corrosion in water distribution systems. LSI for carbon dioxide and sulfuric acid at pH 6 was -2.3, -3.3. Therefore, carbon dioxide was more effective at controlling corrosion than sulfuric acid.

Influencing factors and prediction of carbon dioxide emissions using factor analysis and optimized least squares support vector machine

  • Wei, Siwei;Wang, Ting;Li, Yanbin
    • Environmental Engineering Research
    • /
    • 제22권2호
    • /
    • pp.175-185
    • /
    • 2017
  • As the energy and environmental problems are increasingly severe, researches about carbon dioxide emissions has aroused widespread concern. The accurate prediction of carbon dioxide emissions is essential for carbon emissions controlling. In this paper, we analyze the relationship between carbon dioxide emissions and influencing factors in a comprehensive way through correlation analysis and regression analysis, achieving the effective screening of key factors from 16 preliminary selected factors including GDP, total population, total energy consumption, power generation, steel production coal consumption, private owned automobile quantity, etc. Then fruit fly algorithm is used to optimize the parameters of least squares support vector machine. And the optimized model is used for prediction, overcoming the blindness of parameter selection in least squares support vector machine and maximizing the training speed and global searching ability accordingly. The results show that the prediction accuracy of carbon dioxide emissions is improved effectively. Besides, we conclude economic and environmental policy implications on the basis of analysis and calculation.

($Zn_{x}Fe_{3-x}O_{4-{\delta}}$를 이용한 이산화탄소의 분해 (Decomposition of Carbon Dioxide using $Zn_{x}Fe_{3-x}O_{4-{\delta}}$)

  • 양천모;조영구;임병오
    • 한국응용과학기술학회지
    • /
    • 제17권1호
    • /
    • pp.55-61
    • /
    • 2000
  • $Zn_{x}Fe_{3-x}O_{4}(0.00.<X<0.08)$ was synthesized by air oxidation method for the decomposition of carbon dioxide. We investigated the characteristics of catalyst, the form of methane by gas chromatograph after decomposition of carbon dioxide and kinetic parameter. $Zn_{x}Fe_{3-x}O_{4}(0.00.<X<0.08)$ was spinel type structure. The surface areas of catalysts($Zn_{x{Fe_{3-x}O_{4}(0.00.<X<0.08)$) were $15{\sim}27$ $m^{2}/g$. The shape of $Zn_{0.003}Fe_{2.997}O_{4}$ was sphere. The optimum temperature for the decomposition of carbon dioxide into carbon was $350^{\circ}C$. $Zn_{0.003}Fe_{2.997}O_{4}$ showed the 85% decomposition rate of carbon dioxide and the degree of reduction by hydrogen(${\delta}$) of $Zn_{0.003}Fe_{2.997}O_{4}$ was 0.32. At $350^{\circ}C$, the reaction rate constant and activation energy of $Zn_{0.003}Fe_{2.997}O_{3.68}$ for the decomposition of carbon dioxide into carbon were 3.10 $psi^{1-{\alpha}}/min$ and 0.98 kcal/mole respectively. After the carbon dioxide was decomposed, the carbon which was absorbed on the catalyst surface was reacted with hydrogen and it became methane.

잔디밭에서 기온과 이산화탄소 농도의 연직 변동 분석 (Vertical Variations Analysis of Air Temperature and CO2 Concentration in the Grassplots)

  • 소윤환;강동환;김일규;김병우;윤환진;김시현;손용석;신정현;안정우
    • 한국환경과학회지
    • /
    • 제26권2호
    • /
    • pp.147-157
    • /
    • 2017
  • This study investigated the characteristics of variations in carbon dioxide concentration and air temperature with the vertical change of surface in a grassplot. Field observations were carried out at a grassplot in Gyeongnam Science High School, over four days in August and November, 2015. Continuous observation equipment (GMP343, VAISALA) was installed at the LP (0.1 m from the surface) and UP (1.1 m from the surface) points, and the carbon dioxide concentration and air temperature were measured simultaneously at 1-min intervals. To summarize the results of the observation, August had higher than average concentrations of carbon dioxide, while November showed average air temperatures. Moreover, the concentration of carbon dioxide was higher at the UP point, while the air temperature was higher at the LP point. The correlation coefficient of carbon dioxide concentration between the UP and LP points was 0.80 in August across all the four days, while it was higher in November at 0.58-0.95. The results of the regression analysis of carbon dioxide concentration with air temperature changes for both August and November showed a distinct change at the LP point (R2=0.36-0.76), as compared to the UP point (R2=0.1-0.57). Between the UP and LP points, the carbon dioxide concentration and air temperature regression analysis results indicated that an active exchange was taking place between the two points.

김치용기에서의 이산화탄소 농도 제어를 위한 주입 프로그램 조건 설정 (Programmed Conditions of Supplying Carbon Dioxide to Keep its Desired Concentration in Kimchi Container)

  • 안덕순;조민경;박수연;이동선
    • 한국포장학회지
    • /
    • 제25권2호
    • /
    • pp.31-35
    • /
    • 2019
  • Kimchi is a refreshing sour food which gives sour and carbonic acid taste of carbon dioxide produced during the fermentation process. So, carbon dioxide injection was tried to raise carbonic acid taste of kimchi stored in the airtight container. First, carbon dioxide injection times of a given gas supply system were determined experimentally to attain initial concentration of 80% for different solid/liquid ratios. Since carbon dioxide is dissolved in kimchi to decrease its concentration during storage, periodical carbon dioxide injection conditions were needed and determined to keep the $CO_2$ concentration above 70%. For the initial flushing to 80% $CO_2$ concentration in model system filled with water, the injection time ranged from 40 to 89 seconds for free volumes of 2-8 L. $CO_2$ injection conditions for the under-ripened storage at $10^{\circ}C$ consisted of longer time at more frequent cycles for watery kimchi than for Chinese cabbage kimchi. At $0^{\circ}C$ of subsequent ripened stage storage of watery kimchi, the periodical injection at 3 hour interval was required because of continuous dissolution of carbon dioxide. However, Chinese cabbage kimchi did not require subsequent $CO_2$ injection during the ripened state storage and needed only flushing to 80% $CO_2$ at time of the container opening and closing. These results can be used as basic information for the programmed control of $CO_2$ injection in the kimchi container system.