• 제목/요약/키워드: Carbon-carbon composite

Search Result 2,820, Processing Time 0.027 seconds

Ablative Characteristics of Carbon/Carbon Composites by Liquid Rocket

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Nam-Joo
    • Carbon letters
    • /
    • 제2권3_4호
    • /
    • pp.192-201
    • /
    • 2001
  • The Carbon/Carbon composite was prepared from 3D carbon fiber preform and coal tar pitch as matrix precursor. In order to evaluate of ablative characteristics of the composite, liquid rocket system was employed Kerosene and liquid oxygen was used as propellants, operating at a nominal chamber pressure of 330 psi and a nominal mixture ratio (O/F) of 2.0. The results of an experimental evaluation were that high density composite exhibited high, while low density composites showed low erosion resistance. The erosion rate against heat flux was highly depended on the density of the materials. The morphology of eroded fiber showed differently according to collision angle with heat flux on the composite. The granular matrix which derived from carbonization pressure of 900 bar was more resistance to heat flux than well-developed flow type matrix.

  • PDF

Synthesis and characterization of polybenzoxazole/graphene oxide composites via in situ polymerization

  • Lim, Jun;Kim, Min-Cheol;Goh, Munju;Yeo, Hyeounk;Shin, Dong Geun;Ku, Bon-Cheol;You, Nam-Ho
    • Carbon letters
    • /
    • 제14권4호
    • /
    • pp.251-254
    • /
    • 2013
  • In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.

카본 블렉을 함유한 유리섬유 직조 복합재 적층판의 유전율 (Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion)

  • 김진봉;정재한;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.56-59
    • /
    • 2002
  • This paper presents a study on the permittivities of the E-glass fabric/epoxy composite laminates containing carbon black dispersions at microwave frequency. Measurement showed that the complex permittivities of the composites depend strongly on the natures and concentrations of the carbon black dispersion. A new scheme to obtain a mixing law for the estimation of complex permittivity is proposed. The experimental values of the complex permittivities were compared to those calculated. Simultaneously, the complex permittivity of carbon black itself was also calculated by the scheme.

  • PDF

Sliding Friction and Wear Behavior of C/C Composites Against 40 Cr Steel

  • Ge, Yicheng;Yi, Maozhong;Xu, Huijuan;Peng, Ke;Yang, Lin
    • Carbon letters
    • /
    • 제10권2호
    • /
    • pp.97-100
    • /
    • 2009
  • In this work, effects of carbon matrix on sliding friction and wear behavior of four kinds of C/C have been investigated against 40 Cr steel ring mate. Composite A with rough lamination carbon matrix (RL) shows the highest volume loss and coefficient of friction, while composite D with smooth lamination/resin carbon matrix (SL/RC) shows the lowest volume loss. The worn surface of composite A appears smooth, whereas that of composite C with smooth lamination carbon (SL) appears rough. The worn surface of composite D appears smooth under low load but rough under high load. Atomic force microscope images show that the size of wear particles on the worn surface is also dependent on the carbon matrix.

Preparation of Composite Adsorbents by Activation of Water Plant Sludge and Phenolic Resin Mixtures

  • Myung, Heung-Sik;Kim, Dong-Pyo
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.154-157
    • /
    • 2001
  • Composite adsorbents were prepared by mixing water plant sludge with phenolic resin having the ratio of 1 : 1, 1 : 2, and 1 : 3 respectively, curing from $100^{\circ}C$ to $170^{\circ}C$ under $N_2$ atmosphere, and then activating with $N_2$ at $700^{\circ}C$. Thermal property, specific surface area and morphology of the composite adsorbents as well as their precursors were measured by TGA, BET and SEM respectively. Removal efficiency of the composite adsorbents to ${NH_4}^+$ and TOC was compared with those of commercial zeolite and activated carbon. The adsorbents presented very promising TOC removal efficiency of 98%, which was identical level to that of commercial activated carbon while they displayed removal efficiency, only 32%, of ${NH_4}^+$. Therefore, this composite adsorbent considered as the alternative material of commercial activated carbon, used as an expensive removal agent of organic substances and THM in water treatment plant and it also suggested a possibility of practical application in other processes.

  • PDF

Supercapacitor용 Polyaniline-Carbon Composite전극의 충방전 특성 (Charge-Discharge Properties of Polyaniline-Carbon Composite Electrodes for Supercapacitor)

  • 강광우;김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.124-127
    • /
    • 2000
  • The purpose of this study is to research and develop PAn-Carbon composite electrode for Supercapacitor. Supercapacitor cell of PAn-Carbon composite electrode with 1M $LiClO_{4}/IPC$ brings out good capacitor performance below 4.0V. The radius of semicircle of PAn-Carbon composite electrode adding 30wt% Acetylene Black was absolutely small. The total resistance of Supercapacitor cell mainly depended on internal resistance of he electrode. The discharge capacitance of PAn-Carbon on composite with 30wt% Acetylene Black in 1st and 50th cycles was 29 and 31F/g at current density of $1mA/cm^2$. The capacitance of PAn-Carbon composite with 30wt% Acetylene Black capacitor was larger than that of PAn capacitor without Acetylene Black. The coulombic efficiency of supercapacitor at discharge process of 1 and 50 cycles were 94 and 100%. respectively. PAn-Carbon composite Supercapacitor with 30wt.% Acetylene Black content showed good capacitance and stability with cycling.

  • PDF

카본블랙/섬유강화 복합재료의 전자파 차폐효과 (Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite)

  • 김진석;한길영;안동규;이상훈;김민수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

탄소섬유 에폭시 복합재료의 정밀드릴가공 특성에 관한 연구 (A Study on Precise Drilling Characteristics of Carbon Fiber Epoxy Composite Materials)

  • 김홍배
    • 한국정밀공학회지
    • /
    • 제15권10호
    • /
    • pp.203-208
    • /
    • 1998
  • Carbon fiber epoxy composite materials are widely used in the structures of aircrafts, robots and other machines because of their high specific strength, high specific stiffness and high damping. In order for the composite materials to be used in the aircraft structures or machine elements, accurate surfaces for bearing mounting or joints must be provided, which require precise machining. In this paper, the machinability characterisitcs of the drilling operation of the carbon fiber epoxy composite materials was experimentally investigated. The experimental results are as follows 1.The entrance of hole is very good manufacturing existing, but exit come to occur sever surface exfoliation. 2. The cutting force in drilling of the carbon fiber epoxy composite materials is decreased as the drilling speed increased. 3.The hole of the carbon fiber epoxy composite materials is not good manufacturing by use of the standard twist, therefore, the new drill designed in order to accurate hole.

  • PDF

탄소섬유 복합재료를 적용한 ANG 연료용기의 최적 형상설계 (Optimal Shape Design of ANG Fuel Vessel Applied to Composite Carbon Fiber)

  • 김건회
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.65-71
    • /
    • 2019
  • The development of adsorbed natural gas (ANG) has emerged as one of potential solutions. It is desirable to reduce the weight of vessel by applying light-weighed a composite carbon fiber in order to response to a egulation of $CO_2$ emission. Through understanding of a composite carbon fiber, and material characteristic of a composite carbon fiber is required in order for better application of a reduction of weight and an analysis of material characteristic. Herein, this study suggest the composite carbon fiber vessel applied to the characteristic of carbon fiber, and it decides the preliminary shape based on the test of material characteristic for ANG vessel applied to a composite carbon fiber, and its basic shape calculate through on the netting theory. Moreover, the detail shape design is analyzed by a finite element analysis, and in the stage of detail sahp design and analysis of stress was performed on the typical shape using a finite element analysis, and the result of preliminary design was verified.

서프보드 적용을 위한 하이브리드 복합재료의 열적 특성 (Thermal Characteristics of Hybrid Composites for Application to Surfboard)

  • 김윤해;이진우;박창욱;박수정
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.351-355
    • /
    • 2014
  • Today, carbon fibers are used as heating elements. Carbon fibers are generally used to reinforce composite materials because they are lightweight and have a high strength and modulus. Carbon fiber reinforced composite materials are used for aerospace, automobile, and wind turbine blade applications. This work explored the possibility of using carbon fiber reinforced composite materials as self heating materials. The temperatures of the carbon fiber reinforced composites were measured. These results verified that the carbon fiber reinforced composite materials could be used as heating elements. A glass fiber was laminated using various methods. The thermal characteristics of the composites were evaluated. This confirmed that the generation of heat varied according to the lamination thicknesses of the carbon fiber and glass fiber. As the number of carbon fiber laminations increased, the heat-generating temperature increased. In contrast, as the number of glass fiber laminations increased, the amount of heat decreased. The generation of heat and ability to remain warm could be controlled by controlling the carbon fiber and glass fiber laminations.