• Title/Summary/Keyword: Carbon-based Catalyst

Search Result 194, Processing Time 0.023 seconds

Recent Research Trend of Zeolitic Imidazolate Framework-67 for Bifunctional Catalyst (ZIF-67을 이용한 이기능성 촉매의 최신연구 동향)

  • Kim, Sang Jun;Jo, Seung Geun;Park, Gil-Ryeong;Lee, Eun Been;Lee, Jae Min;Lee, Jung Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.2
    • /
    • pp.98-106
    • /
    • 2022
  • Metal-organic frameworks (MOFs) are widely used in various fields because they make it easy to control porous structures according to combinations of metal ions and organic linkers. In addition, ZIF (zeolitic imidazolate framework), a type of MOF, is made up of transition metal ions such as Co2+ or Zn2+ and linkers such as imidazole or imidazole derivatives. ZIF-67, composed of Co2+ and 2-methyl imidazole, exhibits both chemical stability and catalytic activity. Recently, due to increasing need for energy technology and carbon-neutral policies, catalysis applications have attracted tremendous research attention. Moreover, demand is increasing for material development in the electrocatalytic water splitting and metal-air battery fields; there is also a need for bifunctional catalysts capable of both oxidation/reduction reactions. This review summarizes recent progress of bifunctional catalysts for electrocatalytic water splitting and metal-air batteries using ZIF-67. In particular, the field is classified into areas of thermal decomposition, introduction of heterogeneous elements, and complex formation with carbon-based materials or polyacrylonitrile. This review also focuses on synthetic methods and performance evaluation.

Theoretical and numerical study to investigate characteristics of light-off and steady state of methane autothermal reactor for efficient light-off, high hydrogen yield and selectivity (시동 특성, 수소 생산 및 선택성 향상을 위한 자열개질기의 이론 및 수치해석적 연구)

  • Lee, Shin-Ku;Bae, Joong-Myeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3353-3358
    • /
    • 2007
  • The present paper is devoted to investigate dynamic effect and steady-state performance of methane autothermal reformer theoretically and numerically. In order to simplify the complicated phenomena in the system, axisymmetric heterogeneous reactor model is developed. As autothermal reaction takes places on catalyst surface between bulk gas and catalyst, volume averaging method is incorporated using porous medium approach. To understand the start-up process which occurs in the reactor is highly important. Therefore, in this paper we get various goverining equations to find out transient and steady solutions and time scale for start-up introducing dimensionless variables. Start-up is a significant issue in reforming reaction for automobile system and fueling of SOFC-based auxiliary power units. This paper deals with characteristics of heat and mass transfer and predicted light-off time in the reformer as oxygen to carbon ratio ($O_2$/C) and amount of feeding gas.

  • PDF

Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation ($CO_2/H_2$ 원천분리 SMART 시스템의 수소생산특성)

  • Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.382-390
    • /
    • 2007
  • To check the feasibility of SMART(Steam Methane Advanced Reforming Technology) system, an experimental investigation was performed. A fluidized bed reactor of diameter 0.052m was operated cyclically up to 10th cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone(domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) condition. The hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased. However, the average hydrogen concentration at 10th cycle was 82.5% and this value is also higher than that of SMR. Based on these results, we could conclude that the SMART system can replace SMR system to generate pure hydrogen without HTS (high tempeature shift), LTS (low temperature shift) and $CO_2$ separation process.

Preparation and Characterization of Ionic Liquid-based Electrodes for High Temperature Fuel Cells Using Cyclic Voltammetry

  • Ryu, Sung-Kwan;Choi, Young-Woo;Kim, Chang-Soo;Yang, Tae-Hyun;Kim, Han-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.30-38
    • /
    • 2013
  • In this study, a catalyst slurry was prepared with a Pt/C catalyst, Nafion ionomer solution as a binder, an ionic liquid (IL) (1-butyl-3-methylimidazolium tetrafluoroborate), deionized water and ethanol as a solvent for the application to polymer electrolyte fuel cells (PEFCs) at high-temperatures. The effect of the IL in the electrode of each design was investigated by performing a cyclic voltammetry (CV) measurement. Electrodes with different IL distributions inside and on the surface of the catalyst electrode were examined. During the CV test, the electrochemical surface area (ESA) obtained for the Pt/C electrode without ILs gradually decreased owing to three mechanisms: Pt dissolution/redeposition, carbon corrosion, and place exchange. As the IL content increased in the electrode, an ESA decrement was observed because ILs leaked from the Nafion polymer in the electrode. In addition, the CVs under conditions simulating leakage of ILs from the electrode and electrolyte were evaluated. When the ILs leaked from the electrode, minor significant changes in the CV were observed. On the other hand, when the leakage of ILs originated from the electrolyte, the CVs showed different features. It was also observed that the ESA decreased significantly. Thus, leakage of ILs from the polymer electrolyte caused a performance loss for the PEFCs by reducing the ESA. As a result, greater entrapment stability of ILs in the polymer matrix is needed to improve electrode performance.

Preparation and Thermal Performance of Fullerene-Based Lead Salt

  • Guan, Hui-Juan;Peng, Ru-Fang;Jin, Bo;Liang, Hua;Zhao, Feng-Qi;Bu, Xing-Bing;Han, Wen-Jing;Chu, Shi-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2257-2262
    • /
    • 2014
  • $C_{60}$ is widely investigated because of its unique structure. But its applications in solid propellant seem to be relatively neglected. $C_{60}$ has more outstanding features than carbon black which is widely used as a catalyst ingredient of solid propellant. To combine the advantages of fullerene and lead salts, another good composite in propellant catalysts, we synthesized a kind of fullerene phenylalanine lead salt (FPL) and explored its thermal performances by differential thermal analysis (DTA) and thermogravimetry analysis (TGA). The results show it undergoes four exothermic processes started from 408 K. Combined TGA and X-ray diffractometer (XRD), the decomposition mechanism of FPL was derived by TG-IR and comparing IR spectra of FPL and its residues after burned to $327^{\circ}C$, $376^{\circ}C$ and $424^{\circ}C$, respectively. Effect of FPL on the decomposition characteristic of hexogen (RDX), a type of explosive in propellant, has been investigated using DTA at different heating rate, which shows the decomposition temperatures of the explosive are all reduced by more than 20 K. The corresponding activation energy ($E_a$) is decreased by $30kJ{\cdot}mol^{-1}$. So FPL has potential application as a combustion catalyst in solid propellant.

Simultaneous Application of Platinum-Supported Alumina Catalyst and Ozone Oxidant for Low-temperature Oxidation of Soot (백금담지 알루미나 촉매와 오존 산화제 동시 적용에 의한 탄소 입자상 물질의 저온 산화반응)

  • Lee, Jin Soo;Lee, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.752-760
    • /
    • 2018
  • The lowering of temperature for combustion of diesel particulate matters (or diesel soot) is one of the important tasks in automotive industry that is searching for a way to meet up "high-fuel efficiency, low-emission" standard. In this study, it was discussed how the use of ozone over platinum-based catalyst promotes a low-temperature soot oxidation occurred at $150^{\circ}C$. The use of platinum catalyst did not increase oxidation rate largely but was very effective in improving the selectivity of carbon dioxide. The pre-oxidation of NO into $NO_2$ using ozone was rather crucial in improving the oxidation rate of soot at $150^{\circ}C$.

Effect of Iron Species in Mesoporous Fe-N/C Catalysts with Different Shapes on Activity Towards Oxygen Reduction Reaction

  • Kang, Taehong;Lee, Jiyeon;Kim, Jong Gyeong;Pak, Chanho
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.137-145
    • /
    • 2021
  • Among the non-precious metal catalysts, iron-nitrogen doped carbon (Fe-N/C) catalysts have been recognized as the most promising candidates for an alternative to Pt-based catalysts for the oxygen reduction reaction (ORR) under alkaline and acidic conditions. In this study, the nano replication method using mesoporous silica, which features tunable primary particle sizes and shape, is employed to prepare the mesoporous Fe-N/C catalysts with different shapes. Platelet SBA-15, irregular KIT-6, and spherical silica particle (SSP) were selected as a template to generate three different kinds of shapes of the mesoporous Fe-N/C catalyst. Physicochemical properties of mesoporous Fe-N/C catalysts are characterized by using small-angle X-ray diffraction, nitrogen adsorption-desorption isotherms, and scanning electron microscopy images. According to the electrochemical evaluation, there is no morphological preference of mesoporous Fe-N/C catalysts toward the ORR activity with half-cell configuration under alkaline electrolyte. By implementing X-ray photoelectron spectroscopy analysis of Fe and N atoms in the mesoporous Fe-N/C catalysts, it is possible to verify that the activity towards ORR highly depends on the portions of "Fe-N" species in the catalysts regardless of the shape of catalysts. It was suggested that active site distribution in the Fe-N/C is one important factor towards ORR activity.

A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production (수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구)

  • HYUNSEUNG BYUN;YUNJI KU;JUHEE OH;JAESUNG BAN;YOUNGJIN RAH;JESEOL LEE;WONJUN CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.581-586
    • /
    • 2023
  • As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials (석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성)

  • Kim, Daesup;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.496-501
    • /
    • 2022
  • In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

Preparation, Characterization and Catalytic Performance of Ionic Liquid Immobilized onto Polystyrene-based Polymer for the Synthesis of Allyl Glycidyl Carbonate (폴리스티렌계 고분자에 고정화된 이온성 액체 촉매의 제조와 알릴글리시딜카보네이트 합성 반응 특성)

  • Lee, Mi-Kyung;Choi, Hye-Ji;Park, Dae-Won
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.621-626
    • /
    • 2010
  • In this study, imidazole-based ionic liquid on polystyrene was prepared and its catalytic performance in the cycloaddition of $CO_2$ with allyl glycidyl ether(AGE) to produce allyl glycidyl carbonate was investigated. The ionic liquid was generated on the polystyrene-based polymer through the immobilization of imidazole. The prepared catalyst was characterized using a number of instrumental analysis including EA, FT-IR, TGA and SEM. The immobilized ionic liquid showed very good catalytic activity for the cycloaddition of $CO_2$ with AGE, having 80% of AGE conversion with over 96% of the carbonate selectivity at $120^{\circ}C$ under 1.48 MPa $CO_2$ pressure. The immobilized ionic liquid can be used for the reaction up to four consecutive runs without significant loss of its catalytic activity.