• Title/Summary/Keyword: Carbon-14

Search Result 1,817, Processing Time 0.027 seconds

Selective Reduction of $\alpha,\beta$-Unsaturated Ketones with Borohydride Exchange Resin-$CuSO_4$ in Methanol

  • Yoon, Nung-Min;Sim, Tae-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.749-752
    • /
    • 1993
  • Borohydride exchange resin $(BER)-CuSO_4$ system readily reduces {\alpha},{\beta}$-unsaturated ketones to the corresponding saturated alcohols quantitatively. This reduction tolerates many functional groups such as carbon-carbon multiple bonds, chlorides, epoxides, esters, amides and nitriles.

The Influence of Carbon Fiber Heat Treatment Temperature on Carbon-Carbon Brakes Characteristics

  • Galiguzov, Andrey;Malakho, Artem;Kulakov, Valery;Kenigfest, Anatoly;Kramarenko, Evgeny;Avdeev, Viktor
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.22-26
    • /
    • 2013
  • The effects of heat treatment temperature (HTT) of polyacrylonitrile-based carbon fiber (CF) on the mechanical, thermal, and tribological properties of C/C composites were investigated. It was found that HTT (graphitization) of CF affects the thermal conductivity and mechanical and tribological characteristics of C/C composites. Thermal treatment of fibers at temperatures up to $2800^{\circ}C$ led to a decrease of the wear rate and the friction coefficient of C/C composite-based discs from 7.0 to 1.1 ${\mu}m$/stop and from 0.356 to 0.269, respectively. The friction surface morphology and friction mechanism strongly depended on the mechanical properties of the CFs. The relief of the friction surface of composites based on CFs with final graphitization was also modified, compared to that of composites based on initial fibers. This phenomenon could be explained by modification of the abrasive wear resistance of reinforcement fibers and consequently modification of the friction and wearing properties of composites. Correlation of the graphitization temperature with the increased flexural and compressive strength, apparent density, and thermal conductivity of the composites was also demonstrated.

Size sorting of chemically modified graphene nanoplatelets

  • Han, Joong Tark;Jang, Jeong In;Kim, Sung Hun;Jeong, Seung Yol;Jeong, Hee Jin;Lee, Geon-Woong
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.89-93
    • /
    • 2013
  • Size-sorted graphene nanoplatelets are highly desired for fundamental research and technological applications of graphene. Here we show a facile approach for fabricating size-sorted graphene oxide (GO) nanoplatelets by a simple centrifugal method using different dispersion solvents. We found that the small-sized GO nanoplatelets were more effectively separated when dispersed in water or dimethylformamide (DMF) than in an alkali aqueous solution. After several iterations of the centrifugation, the sizes of GO in the supernatant solution were mostly several micrometers. We found that the GO area was not strongly correlated with the C-O content of the GO dispersed in water. However, the size-sorted GO nanoplatelets in DMF showed different C-O content, since DMF can reduce GO nanoplatelets during exfoliation and centrifugation processes.

Nanocarbon synthesis using plant oil and differential responses to various parameters optimized using the Taguchi method

  • Tripathi, Suman;Sharon, Maheshwar;Maldar, N.N.;Shukla, Jayashri;Sharon, Madhuri
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.210-217
    • /
    • 2013
  • The synthesis of carbon nanomaterials (CNMs) by a chemical vapor deposition method using three different plant oils as precursors is presented. Because there are four parameters involved in the synthesis of CNM (i.e., the precursor, reaction temperature of the furnace, catalysts, and the carrier gas), each having three variables, it was decided to use the Taguchi optimization method with the 'the larger the better' concept. The best parameter regarding the yield of carbon varied for each type of precursor oil. It was a temperature of $900^{\circ}C$ + Ni as a catalyst for neem oil; $700^{\circ}C$ + Co for karanja oil and $500^{\circ}C$ + Zn as a catalyst for castor oil. The morphology of the nanocarbon produced was also impacted by different parameters. Neem oil and castor oil produced carbon nanotube (CNT) at $900^{\circ}C$; at lower temperatures, sphere-like structures developed. In contrast, karanja oil produced CNTs at all the assessed temperatures. X-ray diffraction and Raman diffraction analyses confirmed that the nanocarbon (both carbon nano beads and CNTs) produced were graphitic in nature.

Modifications of mechanical, thermal, and electrical characteristics of epoxy through dispersion of multi-walled carbon nanotubes in supercritical carbon dioxide

  • Zaidi, M.G.H.;Joshi, S.K.;Kumar, M.;Sharma, D.;Kumar, A.;Alam, S.;Sah, P.L.
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.218-227
    • /
    • 2013
  • A supercritical carbon dioxide (SCC) process of dispersion of multi-walled carbon nanotubes (MWCNTs) into epoxy resin has been developed to achieve MWCNT/epoxy composites (CECs) with improved mechanical, thermal, and electrical properties. The synthesis of CECs has been executed at a MWCNT (phr) concentration ranging from 0.1 to 0.3 into epoxy resin (0.1 mol) at 1800 psi, $90^{\circ}C$, and 1500 rpm over 1 h followed by curing of the MWCNT/epoxy formulations with triethylene tetramine (15 phr). The effect of SCC treatment on the qualitative dispersion of MWCNTs at various concentrations into the epoxy has been investigated through spectra analyses and microscopy. The developed SCC assisted process provides a good dispersion of MWCNTs into the epoxy up to a MWCNT concentration of 0.2. The effects of SCC assisted dispersion at various concentrations of MWCNTs on modification of mechanical, thermal, dynamic mechanical thermal, and tribological properties and the electrical conductivity of CECs have been investigated.

Synthesis and characterization of polybenzoxazole/graphene oxide composites via in situ polymerization

  • Lim, Jun;Kim, Min-Cheol;Goh, Munju;Yeo, Hyeounk;Shin, Dong Geun;Ku, Bon-Cheol;You, Nam-Ho
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.251-254
    • /
    • 2013
  • In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.

Comparative studies of porous carbon nanofibers by various activation methods

  • Lee, Hye-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.14 no.3
    • /
    • pp.180-185
    • /
    • 2013
  • In this study, activated carbons nanofibers (ACNFs) were prepared from polyacrylonitrile-based nanofibers by physical ($H_2O$ and $CO_2$) and chemical (KOH) activation. The surface and structural characteristics of the porous carbon were observed by scanning electron microscopy and X-ray diffraction, respectively. Pore characteristics were investigated by $N_2$/77K adsorption isotherms. The specific surface area of the physically ACNFs was increased up to $2400m^2/g$ and the ACNFs were found to be mainly composed of micropore structures. Chemical activation using KOH produced ACNFs with high specific surface area (up to $2500m^2/g$), and the micropores were mainly found in the ACNFs. The physically and chemically ACNFs showed both mainly type I from the International Union of Pure and Applied Chemistry classification.

Study on the Removal of Carbon Dioxide in the Subway Cabin Using Zeolite Type Carbon Dioxide Adsorbent (제올라이트계 이산화탄소 흡착제를 사용한 지하철 객실 내부의 이산화탄소 제거에 관한 연구)

  • Cho, Young-Min;Park, Duck-Shin;Kwon, Soon-Bark;Lee, Ju-Yeol;Hwang, Yun-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • High concentration of carbon dioxide at subway cabin is one of the serious environmental concerns because carbon dioxide causes drowsiness, headache, and nervelessness of passengers. Ministry of Environment set a guideline for indoor carbon dioxide levels in train or subway in 2007. In this study, a carbon dioxide removal system for subway cabin was developed and tested using a test subway cabin. Various types of modified zeolites were used as the adsorbent of carbon dioxide. The tested zeolites were applied to the subway cabin, and showed high potential to lower the indoor $CO_2$ level.

Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams

  • Emrah Madenci;Yasin Onuralp Ozkilic;Ahmad Hakamy;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.443-450
    • /
    • 2023
  • Carbon nanotubes (CNTs) have received increased interest in reinforcing research for polymer matrix composites due to their exceptional mechanical characteristics. Its high surface area/volume ratio and aspect ratio enable polymer-based composites to make the most of its features. This study focuses on the experimental tensile testing and fabrication of carbon nanotube reinforced composite (CNTRC) beams, exploring various micromechanical models. By examining the performance of these models alongside experimental results, the research aims to better understand and optimize the mechanical properties of CNTRC materials. Tensile properties of neat epoxy and 0.3%; 0.4% and 0.5% by CNT reinforced laminated single layer (0°/90°) carbon fiber composite beams were investigated. The composite plates were produced in accordance with ASTM D7264 standard. The tensile test was performed in order to see the mechanical properties of the composite beams. The results showed that the optimum amount of CNT was 0.3% based on the tensile capacity. The capacity was significantly reduced when 0.4% CNT was utilized. Moreover, the experimental results are compared with Finite Element Models using ABAQUS. Hashin Failure Criteria was utilized to predict the tensile capacity. Good conformance was observed between experimental and numerical models. More importantly is that Young' Moduli of the specimens is compared with the prediction Halpin-Tsai and Mixture-Rule. Although Halpin-Tsai can accurately predict the Young's Moduli of the specimens, the accuracy of Mixture-Rule was significantly low.

2,4-D Biodegradation Using Microorganism Extracted From Soil (1) (토양미생물에 의한 2, 4-D 분해에 관한 연구 (1))

  • Choung, Youn-kyoo;Lee, Byung chan;Kim, Jin-wook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.45-53
    • /
    • 1999
  • The microbial organisms named "Pseudomonas sp. LK-14" were isolated from farm land and shallow river sediment, activated, augmented and identified; which were using 2,4-D (2,4-Dichlorophenoxyacetic acid) as a sole carbon source and energy source. 2,4-D removal efficiency of LK-14 with 2,4-D sole carbon source (reactor S) were higher than that of Activated Sludge with 2,4-D sole carbon source (reactor A). Dynamic bioligical reaction kinetic parameters (sole carbon source was 2,4-D) obtained from batch reactor experiments were ${\mu}_{max}$ $0.105hr^{-1}$, $K_{s,24D}$ 15.64mg/L, $K_{i,24D}$ $1.94h^{r-1}$, $Y_{24D}$ 0.39 for LK-14 and ${\mu}_{max}$ $0.008hr^{-1}$, $K_{s,24D}$ 26.95mg/L, $K_{i,24D}$ $1.75hr^{-1}$, $Y_{24D}$ 0.10 for Activated Sludge. Using these parameters, we could predict the behaviors of 2,4-D substrate utilized by LK-14 and Activated Sludge in batch reactors. The kinetic parameters are enable to predict the 2,4-D substrate and microbial population behavior entering into wastewater treatment plants by using unsteady states dynamic simulation modeling technique.

  • PDF