• Title/Summary/Keyword: Carbon-13

Search Result 2,005, Processing Time 0.032 seconds

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.

A simple quasi-3D sinusoidal shear deformation theory with stretching effect for carbon nanotube-reinforced composite beams resting on elastic foundation

  • Hadji, Lazreg;Zouatnia, Nafissa;Meziane, Mohamed Ait Amar;Kassoul, Amar
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.509-518
    • /
    • 2017
  • The objective of the present paper is to investigate the bending behavior with stretching effect of carbon nanotube-reinforced composite (CNTRC) beams. The beams resting on the Pasternak elastic foundation, including a shear layer and Winkler spring, are considered. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are estimated by using the rule of mixture. The significant feature of this model is that, in addition to including the shear deformation effect and stretching effect it deals with only 4 unknowns without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. The equilibrium equations have been obtained using the principle of virtual displacements. The mathematical models provided in this paper are numerically validated by comparison with some available results. New results of bending analyses of CNTRC beams based on the present theory with stretching effect is presented and discussed in details. the effects of different parameters of the beam on the bending responses of CNTRC beam are discussed.

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

A Study on Piezoresistive Characteristics of Smart Nano Composites based on Carbon Nanotubes for a Novel Pressure Sensor (압력센서 개발을 위한 탄소 나노 튜브 기반 지능형 복합소재 전왜 특성 연구)

  • Kim, Sung Yong;Kim, Hyun Ho;Choi, Baek Gyu;Kang, In Hyuk;Lee, Ill Yeong;Kang, In Pil
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • This paper presents a preliminary study on the pressure sensing characteristics of smart nano composites made of MWCNT (multi-walled carbon nanotube) to develop a novel pressure sensor. We fabricated the composite pressure sensor by using a solution casting process. Made of carbon smart nano composites, the sensor works by means of piezoresistivity under pressure. We built a signal processing system similar to a conventional strain gage system. The sensor voltage outputs during the experiment for the pressure sensor and the resistance changes of the MWCNT as well as the epoxy based on the smart nano composite under static pressure were fairly stable and showed quite consistent responses under lab level tests. We confirmed that the response time characteristics of MWCNT nano composites with epoxy were faster than the MWCNT/EPDM sensor under static loads.

Removal of ciprofloxacin from aqueous solution by activated carbon prepared from orange peel using zinc chloride

  • Koklu, Rabia;Imamoglu, Mustafa
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.129-137
    • /
    • 2022
  • In this study, the removal of Ciprofloxacin (CPX) from aqueous solutions was investigated by a new activated carbon adsorbent prepared from orange peel (ACOP) with chemical activation using ZnCl2. The physicochemical properties of orange peel activated carbon were characterized by proximate and ultimate analysis, scanning electron microscopy, BET surface area determination and Fourier transformation infrared spectroscopic studies. According to Brunauer-Emmett-Teller isotherm and non-local-density functional theory, the cumulative surface area, pore volume and pore size of ACOP were determined as 1193 m2 g-1, 0.83 cc g-1 and 12.7 Å, respectively. The effects of contact time, pH, temperature and ACOP dose on the batch adsorption of CPX were studied. Adsorption equilibrium data of CPX with ACOP were found to be compatible with both the Langmuir and Freundlich isotherms. CPX adsorption capacity of ACOP was calculated as 181.8 mg g-1 using Langmuir isotherm. The CPX adsorption kinetics were found to be harmonious with the pseudo-second-order kinetic model. Conclusively, ACOP can be assessable as an effective adsorbent for the removal of ciprofloxacin (CPX) from aqueous solutions.

Carbon nanotubes formation on clay and fly ash from catalytic thermal decomposition of recycled polypropylene

  • Nur A. Atikah Kamaruddin;Norzilah A. Halif;Siti A. Hussin;Mohd. N. Mazlee
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2024
  • Fly ash, plastic waste, and clay are mineral materials and residues commonly found in Malaysia. In this study, these materials were fully utilized as raw materials for synthesizing carbon nanotubes (CNTs). Recycled polypropylene, previously used as a food container, served as a carbon source. Fly ash and clay were explored as potential substrates for CNTs growth. The recycled polypropylene was thermally decomposed at 900 ℃ in an inert environment for 90 minutes. Carbon atoms released during this process were deposited on fly ash and clay substrates, which had been immersed in a ferrocene solution to provide a metal catalyst for CNTs growth. The deposited products were characterized using a Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). Morphological analysis revealed that both fly ash and clay were coated with fiber-like structures, confirmed to be CNTs based on a diffraction peak around 26° from the XRD pattern. In conclusion, clay and fly ash demonstrate the potential to be utilized as substrates for CNTs formation.

A Study of Estimation of Carbon Effects per Unit Area by Park & Green Type in Development Project Area (개발사업지구의 공원 · 녹지 유형별 탄소효과 원단위 산정에 관한 기초연구)

  • Kang, Myung-Soo;Kim, Jong-Rim;Kim, Nam-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.5
    • /
    • pp.71-81
    • /
    • 2013
  • This study is aimed to provide basic data for the estimation of carbon effects in development project areas such as Happy Housing Project which includes redevelopment and reconstruction projects by inducing the basic unit of carbon effects and strategic planning and management to enhance carbon effects. According to the analysis, in urban parks, carbon uptake and carbon storage by the unit area of living area parks were $7.614kg/m^2$ and $18.5203kg/m^2$ respectively while carbon uptake and carbon storage by the unit area of theme parks were $1.2261kg/m^2$ and $2.831kg/m^2$ each. In facility greens, carbon uptake and carbon storage were $0.5683kg/m^2$ and $0.6636kg/m^2$ respectively while they were $10.77kg/m^2$ and $13.69kg/m^2$ individually in other urban planning facilities. In other greens, on the contrary, carbon uptake and carbon storage were $0.45kg/m^2$ and $1.02kg/m^2$ respectively. In site landscape, carbon uptake and carbon storage by the unit area of apartment landscape were $3.7394kg/m^2$ and $9.2292kg/m^2$ each.

Comparison of Toxicity and Deposition of Nano-Sized Carbon Black Aerosol Prepared With or Without Dispersing Sonication

  • Kang, Mingu;Lim, Cheol-Hong;Han, Jeong-Hee
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • Nanotoxicological research has shown toxicity of nanomaterials to be inversely related to particle size. However, the contribution of agglomeration to the toxicity of nanomaterials has not been sufficiently studied, although it is known that agglomeration is associated with increased nanomaterial size. In this study, we prepared aerosols of nano-sized carbon black by 2 different ways to verify the effects of agglomeration on the toxicity and deposition of nano-sized carbon black. The 2 methods of preparation included the carbon black dispersion method that facilitated clustering without sonication and the carbon black dispersion method involving sonication to achieve scattering and deagglomeration. Male Sprague-Dawley rats were exposed to carbon black aerosols 6 hr a day for 3 days or for 2 weeks. The median mass aerodynamic diameter of carbon black aerosols averaged $2.08{\mu}m$ (for aerosol prepared without sonication; group N) and $1.79{\mu}m$ (for aerosol prepared without sonication; group S). The average concentration of carbon black during the exposure period for group N and group S was $13.08{\pm}3.18mg/m^3$ and $13.67{\pm}3.54mg/m^3$, respectively, in the 3-day experiment. The average concentration during the 2-week experiment was $9.83{\pm}3.42mg/m^3$ and $9.08{\pm}4.49mg/m^3$ for group N and group S, respectively. The amount of carbon black deposition in the lungs was significantly higher in group S than in group N in both 3-day and 2-week experiments. The number of total cells, macrophages and polymorphonuclear leukocytes in the bronchoalveolar lavage (BAL) fluid, and the number of total white blood cells and neutrophils in the blood in the 2-week experiment were significantly higher in group S than in normal control. However, differences were not found in the inflammatory cytokine levels (IL-$1{\beta}$, TNF-${\alpha}$, IL-6, etc.) and protein indicators of cell damage (albumin and lactate dehydrogenase) in the BAL fluid of both group N and group S as compared to the normal control. In conclusion, carbon black aerosol generated by sonication possesses smaller nanoparticles that are deposited to a greater extent in the lungs than is aerosol formulated without sonication. Additionally, rats were narrowly more affected when exposed to carbon black aerosol generated by sonication as compared to that produced without sonication.

Carbon Storage of Exotic Slash Pine Plantations in Subtropical China

  • Jin, Ling;Liu, Yuanqiu;Ning, Jinkui;Liu, Liangying;Li, Xiaodong
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.150-158
    • /
    • 2019
  • Exotic conifer trees have been extensively planted in southern China because of their high apparent growth and yield. These fast-growing plantations are expected to persist as a considerable potential for temporary and long-term carbon sink to offset greenhouse gas emissions. However, information on the carbon storage across different age ranges in exotic pine plantations is often lacking. We first estimated the ecosystem carbon storage across different age ranges of exotic pine plantations in China by quantifying above- and below-ground ecosystem carbon pools. The carbon storage of each tree component of exotic pine (Pinus elliottii) increased significantly with increasing age in Duchang and Yiyang areas. The stem carbon storage except <10 years in Ji'an areas was the largest component among all other components, which accounts for about 50% of the total carbon storage followed by roots (~28%), branches (~18%), and foliage (~9%). The mean total tree carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across three study areas was 3.69, 13.91 and $20.57Mg\;ha^{-1}$, respectively. The carbon stocks in understory and forest floor were age-independent. Total tree and soil were two dominant carbon pools in slash pine plantations at all age sequences. The carbon contribution of aboveground ecosystem increased with increasing age, while that of belowground ecosystem declined. The mean total ecosystem carbon storage of slash pine plantations for <10, 10-20 and 20-30 years across China was 30.26, 98.66 and $98.89Mg\;ha^{-1}$, respectively. Although subtropical climate in China was suitable for slash pine growth, the mean total carbon stocks in slash pine plantations at all age sequences from China were lower than that values reported in American slash pine plantations.

Analyzing Carbon-Neutral Campus Development Measures through Recognition Analysis of Students - Focused on Chungbuk National University - (학생 설문조사를 통한 탄소중립캠퍼스 조성요인 분석 - 충북대학교 재학생을 대상으로 -)

  • Woo, Hye-Mi;Baek, Jong-In;Kwak, Joo-Hyeon;Min, Suk-Gi;Choi, Choel-Gyu;Ban, Yong-Un
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2010
  • In response to climate change under a university level, this study has intended to find carbon-neutral campus development measures for Chungbuk National University (CBNU), which is composed of such facilities as education, research, and residential buildings. To reach this goal, we reviewed related literatures to find development measures for carbon neutral campus, employed a survey method asking students to show their preference and suitability toward provided measures, and statistical analyses to find appropriate measures using factor analysis. We have found the following results. First, based on literature review, we have identified several concepts regarding carbon-neutral city and has found the elements of carbon-neutral campus development. Second, we have drawn carbon-neutral campus development measures of CBNU through factor analysis. Finally, based on the characteristics and the present carbon-neutral campus conditions of the CBNU, we presented development measures.